Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(6): 1087-98, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768905

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Animales , Antígenos Ly/genética , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Técnicas de Sustitución del Gen , Haploinsuficiencia , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Mutación , Enfermedades Neurodegenerativas/patología , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química
2.
BMC Neurol ; 24(1): 348, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289638

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 1, is a rare neurodegenerative disorder with autosomal dominant inheritance belonging to the polyglutamine diseases. The diagnosis of this disease requires genetic testing that may also include the search for CAT interruption of the CAG repeat tract. CASE PRESENTATION: One 23-years-old patient suffers from a severe ataxia, with early-onset and rapid progression of the disease. His father might have been affected, but no molecular confirmation has been performed. The genetic results were negative for the Friedreich's ataxia, spinocerebellar ataxia type 2, 3, 6, 7 and 17. The numbers of CAG repeats in the ATXN1 gene was assessed by fluorescent PCR, tripled-primed PCR and enzymatic digestion for the search of sequence interruption in the CAG repeats. The patient carried one pathogenic allele of 61 CAG and one intermediate allele of 37 CAG in the ATXN1 gene. Both alleles were uninterrupted. CONCLUSIONS: We report a rare case of spinocerebellar ataxia type 1 with an intermediate allele and a large SCA1 expansion. The determination of the absence of CAT interruption brought crucial information concerning this molecular diagnosis, the prediction of the disease and had practical consequences for genetic counseling.


Asunto(s)
Ataxina-1 , Fenotipo , Ataxias Espinocerebelosas , Humanos , Masculino , Ataxina-1/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Adulto Joven , Alelos , Edad de Inicio , Expansión de Repetición de Trinucleótido/genética , Proteínas del Tejido Nervioso/genética , Ataxinas/genética
3.
Proteins ; 91(3): 380-394, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36208132

RESUMEN

The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas Nucleares , Humanos , Ataxina-1/genética , Ataxina-1/química , Ataxina-1/metabolismo , Ataxinas , Proteínas Nucleares/química , Proteínas del Tejido Nervioso/química
4.
Hum Mol Genet ; 30(19): 1797-1810, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34077532

RESUMEN

Spinocerebellar ataxia type 2 is a polyglutamine (polyQ) disease associated with an expanded polyQ domain within the protein product of the ATXN2 gene. Interestingly, polyQ repeat expansions in ATXN2 are also associated with amyotrophic lateral sclerosis (ALS) and parkinsonism depending upon the length of the polyQ repeat expansion. The sequence encoding the polyQ repeat also varies with disease presentation: a pure CAG repeat is associated with SCA2, whereas the CAG repeat in ALS and parkinsonism is typically interrupted with the glutamine encoding CAA codon. Here, we asked if the purity of the CAG sequence encoding the polyQ repeat in ATXN2 could impact the toxicity of the ataxin-2 protein in vivo in Drosophila. We found that ataxin-2 encoded by a pure CAG repeat conferred toxicity in the retina and nervous system, whereas ataxin-2 encoded by a CAA-interrupted repeat or CAA-only repeat failed to confer toxicity, despite expression of the protein at similar levels. Furthermore, the CAG-encoded ataxin-2 protein aggregated in the fly eye, while ataxin-2 encoded by either a CAA/G or CAA repeat remained diffuse. The toxicity of the CAG-encoded ataxin-2 protein was also sensitive to the translation factor eIF4H, a known modifier of the toxic GGGGCC repeat in flies. These data indicate that ataxin-2 encoded by a pure CAG versus interrupted CAA/G polyQ repeat domain is associated with differential toxicity, indicating that mechanisms associated with the purity of the sequence of the polyQ domain contribute to disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , Esclerosis Amiotrófica Lateral/genética , Animales , Ataxina-2/genética , Ataxina-3/genética , Ataxinas/genética , Drosophila/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética
5.
Hum Genet ; 142(12): 1651-1676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845370

RESUMEN

Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.


Asunto(s)
Proteínas Nucleares , Ataxias Espinocerebelosas , Humanos , Animales , Ratones , Ataxinas , Proteínas Nucleares/genética , Ataxina-1/genética , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/genética , Ataxia , Proteínas Similares a la Proteína de Unión a TATA-Box
6.
Mov Disord ; 38(8): 1428-1442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278528

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction. OBJECTIVES: Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures. METHODS: SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms. RESULTS: Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways. CONCLUSIONS: Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Ratones , Animales , Ataxinas/metabolismo , Agregado de Proteínas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Ratones Transgénicos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ataxias Espinocerebelosas/metabolismo , Fibroblastos/metabolismo
7.
Hum Genomics ; 16(1): 29, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906672

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein. The pathogenic mechanism resulting in SCA1 is still unclear. Protein-protein interactions affect the function and stability of ataxin-1. METHODS: Wild-type and mutant ataxin-1 were expressed in HEK-293T cells. The levels of expression were assessed using real-time polymerase chain reaction (PCR) and Western blots. Co-immunoprecipitation was done in HEK-293T cells expressing exogenous wild-type and mutant ataxin-1 using anti-Flag antibody following by tandem affinity purification in order to study protein-protein interactions. The candidate interacting proteins were validated by immunoprecipitation. Chromatin immunoprecipitation and high-throughput sequencing and RNA immunoprecipitation and high-throughput sequencing were performed using HEK-293T cells expressing wild-type or mutant ataxin-1. RESULTS: In this study using HEK-293T cells, we found that wild-type ataxin-1 interacted with MCM2, GNAS, and TMEM206, while mutant ataxin-1 lost its interaction with MCM2, GNAS, and TMEM206. Two ataxin-1 binding targets containing the core GGAG or AAAT were identified in HEK-293T cells using ChIP-seq. Gene Ontology analysis of the top ataxin-1 binding genes identified SLC6A15, NTF3, KCNC3, and DNAJC6 as functional genes in neurons in vitro. Ataxin-1 also was identified as an RNA-binding protein in HEK-293T cells using RIP-seq, but the polyglutamine expansion in the ataxin-1 had no direct effects on the RNA-binding activity of ataxin-1. CONCLUSIONS: An expanded polyglutamine tract in ataxin-1 might interfere with protein-protein or protein-DNA interactions but had little effect on protein-RNA interactions. This study suggested that the dysfunction of protein-protein or protein-DNA interactions is involved in the pathogenesis of SCA1.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Ataxias Espinocerebelosas , Ataxina-1/genética , Ataxina-1/metabolismo , Ataxinas/genética , Ataxinas/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , ARN , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
8.
Mol Cell ; 55(2): 186-98, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24954906

RESUMEN

It has been proposed that Ataxin-2, a member of the like-Sm (LSm) protein family, participates in the regulation of RNA metabolism through interaction with PABPC1. However, the exact biological mechanism and in vivo targets remain unknown. Here, we report that Ataxin-2 binds directly to RNAs in a PABPC1-independent manner. High-throughput sequencing of Ataxin-2-bound RNAs prepared by PAR-CLIP revealed that Ataxin-2 binds predominantly to uridine-rich elements, including well-characterized cis-regulatory AU-rich elements, in the 3' UTRs of target mRNAs. Gene expression analysis after Ataxin-2 depletion or overexpression revealed that Ataxin-2 stabilizes target mRNAs and increases the abundance of the corresponding proteins. A tethering assay demonstrated that Ataxin-2 elicits this effect by direct interaction with mRNAs. We also found that disease-associated polyglutamine expansion downregulates the physiological activity of Ataxin-2. These findings suggest that Ataxin-2 is an RNA-binding protein that targets cis-regulatory elements in 3' UTRs to stabilize a subset of mRNAs and increase protein expression.


Asunto(s)
Regiones no Traducidas 3' , Proteínas del Tejido Nervioso/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ataxinas , Sitios de Unión , Proteínas ELAV/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Células HEK293 , Humanos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/genética
9.
Mol Cell ; 55(1): 15-30, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24882209

RESUMEN

Misfolded proteins compromise cellular function and cause disease. How these proteins are detected and degraded is not well understood. Here we show that PML/TRIM19 and the SUMO-dependent ubiquitin ligase RNF4 act together to promote the degradation of misfolded proteins in the mammalian cell nucleus. PML selectively interacts with misfolded proteins through distinct substrate recognition sites and conjugates these proteins with the small ubiquitin-like modifiers (SUMOs) through its SUMO ligase activity. SUMOylated misfolded proteins are then recognized and ubiquitinated by RNF4 and are subsequently targeted for proteasomal degradation. We further show that PML deficiency exacerbates polyglutamine (polyQ) disease in a mouse model of spinocerebellar ataxia 1 (SCA1). These findings reveal a mammalian system that removes misfolded proteins through sequential SUMOylation and ubiquitination and define its role in protection against protein-misfolding diseases.


Asunto(s)
Degeneración Nerviosa/patología , Pliegue de Proteína , Proteolisis , Animales , Ataxina-1 , Ataxinas , Humanos , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Ubiquitina , Ubiquitinación
10.
Biochem Soc Trans ; 49(2): 775-792, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33729487

RESUMEN

Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.


Asunto(s)
Codón Iniciador/genética , Repeticiones de Microsatélite/genética , Enfermedades del Sistema Nervioso/genética , Biosíntesis de Proteínas/genética , Expansión de Repetición de Trinucleótido/genética , Ataxinas/genética , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Degeneraciones Espinocerebelosas/genética
11.
J Neurogenet ; 35(4): 370-380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34159894

RESUMEN

Spinocerebellar Ataxia (SCA) is a heterogeneous adult-onset disorder with an autosomal dominant inheritance pattern mainly caused by triplet repeat expansions. Clinical diagnosis of SCA is based on phenotypic features followed by confirmation through molecular diagnosis. To identify status of repeat range in Indian SCA cases and provide extended family screening, we enrolled 70 clinical SCA suspects. For molecular diagnosis, multiplex PCR (M-PCR) was used for common Indian SCA subtypes 1, 2, 3, 6, 7, 10, 12 and 17. TP-PCR was further used in SCA2, 7 and 10 to identify larger expansions. Eighteen out of 70 SCA suspects (25%) were found to be positive for various SCA subtypes- (5 SCA1 (28%), 6 SAC2 (34%), 2 SCA3 (12%), 3 SCA7 (16%) and one each for SCA6 (1%) and SCA17 (1%) subtypes). Genetic counselling and extended family screening were offered to all positive cases and yielded additional nine cases. We have established M-PCR and TP-PCR to detect the CAG repeat expansion in SCA suspects. This method can confirm SCA subtypes in a reliable, rapid and cost-effective way. Genetic characterization of SCA-related genes has great clinical relevance, as it could provide additional information and guidance to clinicians and family members regarding prognosis.


Asunto(s)
Asesoramiento Genético , Ataxias Espinocerebelosas , Adulto , Ataxina-7 , Ataxinas , Humanos , Proteínas del Tejido Nervioso , Ataxias Espinocerebelosas/genética
12.
Mov Disord ; 36(11): 2519-2529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390268

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE: Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS: The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS: expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin ß-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION: These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
ARN , Ataxias Espinocerebelosas , Animales , Ataxinas/metabolismo , Encéfalo/patología , Ratones , Neuronas/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Ataxias Espinocerebelosas/patología
13.
Eur J Neurol ; 28(3): 955-964, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33070405

RESUMEN

BACKGROUND AND PURPOSE: Spinocerebellar ataxia type 2 (SCA2) is the second most common type of spinocerebellar ataxia in China. However, data on the clinical and genetic features of Chinese SCA2 patients are scarce. This study aims to provide a comprehensive description of in the Chinese SCA2 cohort. METHODS: A total of 135 patients with SCA2 from 92 families and 104 unrelated normal controls were recruited from three medical centers between 2008 and 2020. Sanger sequencing and TA cloning were used to determine the CAG repeat length and intrinsic structure. The clinical data of patients with SCA2, including electromyography, magnetic resonance imaging, positron-emission tomography, and clinical scale scores, were recorded. RESULTS: The mean ± SD age at onset of SCA2 patients was 32.6 ± 11.9 years and the corresponding CAG repeat length was 42.1 ± 3.6. CAG repeat length accounted for 64% of the age-at-onset variance. We observed that patients had a significantly lower proportion of (CAG)8 CAA(CAG)4 CAA(CAG)8 within normal alleles than normal controls (48.8% vs. 64.9%; p = 0.003), while the distribution of the proportion of (CAG)13 CAA (CAG)8 was the opposite. Peripheral neuropathy was frequent, occurring in 75.9% of the patients. Parkinsonism was relatively common, with a frequency of 11.8%. Two patients with parkinsonism had a significantly more severe reduction in dopamine transporter levels in the bilateral striatum than the one patient with pure ataxia. An infant-onset case of SCA2 with more than 180 CAG repeats was characterized by global development delay, hypotonia and hearing impairment. CONCLUSIONS: This study describes the genetic profile and clinical characteristics of the largest SCA2 cohort to date in the Chinese population and analyzes inter-population differences. Many aspects of this study population were different from other populations with SCA2.


Asunto(s)
Perfil Genético , Ataxias Espinocerebelosas , Ataxinas , China , Humanos , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Repeticiones de Trinucleótidos
14.
Genes Dev ; 27(6): 590-5, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23512657

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by polyglutamine expansion in Ataxin-1 (ATXN1). ATXN1 binds to the transcriptional repressor Capicua (CIC), and the interaction plays a critical role in SCA1 pathogenesis whereby reducing CIC levels rescues SCA1-like phenotypes in a mouse model. The ATXN1/HBP1 (AXH) domain of ATXN1 mediates its homodimerization as well as the interaction with CIC. Here, we present the crystal structure of ATXN1's AXH domain bound to CIC and show that the binding pocket of the AXH domain to CIC overlaps with the homodimerization pocket of the AXH domain. Thus, the binding to CIC disrupts the homodimerization of ATXN1. Furthermore, the binding of CIC reconfigures the complex to allow another form of dimerization mediated by CIC, showing the intricacy of protein complex formation and reconfiguration by ATXN1 and CIC. Identifying the surfaces mediating the interactions between CIC and ATXN1 reveals a critical role for CIC in the reconfiguration of the AXH dimers and might provide insight into ways to target the ATXN1/CIC interactions to modulate SCA1 pathogenesis.


Asunto(s)
Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Proteínas Represoras/química , Ataxina-1 , Ataxinas , Dimerización , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Represoras/metabolismo
15.
Hum Mutat ; 40(4): 404-412, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30588707

RESUMEN

Dynamic mutations by microsatellite instability are the molecular basis of a growing number of neuromuscular and neurodegenerative diseases. Repetitive stretches in the human genome may drive pathogenicity, either by expansion above a given threshold, or by insertion of abnormal tracts in nonpathogenic polymorphic repetitive regions, as is the case in spinocerebellar ataxia type 37 (SCA37). We have recently established that this neurodegenerative disease is caused by an (ATTTC)n insertion within an (ATTTT)n in a noncoding region of DAB1. We now investigated the mutational mechanism that originated the (ATTTC)n insertion within an ancestral (ATTTT)n . Approximately 3% of nonpathogenic (ATTTT)n alleles are interspersed by AT-rich motifs, contrarily to mutant alleles that are composed of pure (ATTTT)n and (ATTTC)n stretches. Haplotype studies in unaffected chromosomes suggested that the primary mutational mechanism, leading to the (ATTTC)n insertion, was likely one or more T>C substitutions in an (ATTTT)n pure allele of approximately 200 repeats. Then, the (ATTTC)n expanded in size, originating a deleterious allele in DAB1 that leads to SCA37. This is likely the mutational mechanism in three similar (TTTCA)n insertions responsible for familial myoclonic epilepsy. Because (ATTTT)n tracts are frequent in the human genome, many loci could be at risk for this mutational process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Ataxinas/genética , Mutagénesis Insercional , Proteínas del Tejido Nervioso/genética , Secuencias Repetitivas de Ácidos Nucleicos , Alelos , Animales , Secuencia de Bases , Estudios de Casos y Controles , Cromosomas , Secuencia Conservada , Evolución Molecular , Haplotipos , Humanos , Filogenia , Portugal , Primates , Proteína Reelina
16.
Hum Mol Genet ; 26(16): 3069-3080, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28525545

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the ATXN2 gene. The repeat resides in an encoded region of the gene resulting in polyglutamine (polyQ) expansion which has been assumed to result in gain of function, predominantly, for the ATXN2 protein. We evaluated temporal cerebellar expression profiles by RNA sequencing of ATXN2Q127 mice versus wild-type (WT) littermates. ATXN2Q127 mice are characterized by a progressive motor phenotype onset, and have progressive cerebellar molecular and neurophysiological (Purkinje cell firing frequency) phenotypes. Our analysis revealed previously uncharacterized early and progressive abnormal patterning of cerebellar gene expression. Weighted Gene Coexpression Network Analysis revealed four gene modules that were significantly correlated with disease status, composed primarily of genes associated with GTPase signaling, calcium signaling and cell death. Of these genes, few overlapped with differentially expressed cerebellar genes that we identified in Atxn2-/- knockout mice versus WT littermates, suggesting that loss-of-function is not a significant component of disease pathology. We conclude that SCA2 is a disease characterized by gain of function for ATXN2.


Asunto(s)
Redes Reguladoras de Genes , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Animales , Ataxina-2/genética , Ataxina-2/metabolismo , Ataxinas/genética , Secuencia de Bases , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Células de Purkinje/metabolismo , Análisis de Secuencia de ARN , Repeticiones de Trinucleótidos
17.
Ann Neurol ; 83(4): 816-829, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29575033

RESUMEN

OBJECTIVE: To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. METHODS: A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." RESULTS: MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. INTERPRETATION: Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encefalopatías Metabólicas/etiología , Encéfalo/metabolismo , Ataxias Espinocerebelosas/patología , Actividades Cotidianas , Adulto , Anciano , Ácido Aspártico/metabolismo , Ataxinas/genética , Encéfalo/diagnóstico por imagen , Encefalopatías Metabólicas/diagnóstico por imagen , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Progresión de la Enfermedad , Femenino , Ácido Glutámico/metabolismo , Humanos , Inositol/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
18.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23719381

RESUMEN

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Ataxina-1 , Ataxinas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Drosophila melanogaster/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transgenes
19.
Biophys J ; 114(2): 323-330, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401430

RESUMEN

The AXH domain of protein Ataxin 1 is thought to play a key role in the misfolding and aggregation pathway responsible for Spinocerebellar ataxia 1. For this reason, a molecular level understanding of AXH oligomerization pathway is crucial to elucidate the aggregation mechanism, which is thought to trigger the disease. This study employs classical and enhanced molecular dynamics to identify the structural and energetic basis of AXH tetramer stability. Results of this work elucidate molecular mechanisms behind the destabilizing effect of protein mutations, which consequently affect the AXH tetramer assembly. Moreover, results of the study draw attention for the first time, to our knowledge, to the R638 protein residue, which is shown to play a key role in AXH tetramer stability. Therefore, R638 might be also implicated in the AXH oligomerization pathway and stands out as a target for future experimental studies focused on self-association mechanisms and fibril formation of full-length ATX1.


Asunto(s)
Ataxinas/química , Ataxinas/genética , Mutación , Agregado de Proteínas/genética , Multimerización de Proteína/genética , Ataxinas/metabolismo , Simulación de Dinámica Molecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Termodinámica
20.
Ann Neurol ; 82(4): 615-621, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28976605

RESUMEN

OBJECTIVE: Spinocerebellar ataxia 38 (SCA38) is caused by mutations in the ELOVL5 gene, which encodes an elongase involved in the synthesis of polyunsaturated fatty acids, including docosahexaenoic acid (DHA). As a consequence, DHA is significantly reduced in the serum of SCA38 subjects. In the present study, we evaluated the safety of DHA supplementation, its efficacy for clinical symptoms, and changes of brain functional imaging in SCA38 patients. METHODS: We enrolled 10 SCA38 patients, and carried out a double-blind randomized placebo-controlled study for 16 weeks, followed by an open-label study with overall 40-week DHA treatment. At baseline and at follow-up visit, patients underwent standardized clinical assessment, brain 18-fluorodeoxyglucose positron emission tomography, electroneurography, and ELOVL5 expression analysis. RESULTS: After 16 weeks, we showed a significant pre-post clinical improvement in the DHA group versus placebo, using the Scale for the Assessment and Rating of Ataxia (SARA; mean difference [MD] = +2.70, 95% confidence interval [CI] = +0.13 to + 5.27, p = 0.042). At 40-week treatment, clinical improvement was found significant by both SARA (MD = +2.2, 95% CI = +0.93 to + 3.46, p = 0.008) and International Cooperative Ataxia Rating Scale (MD = +3.8, 95% CI = +1.39 to + 6.41, p = 0.02) scores; clinical data were corroborated by significant improvement of cerebellar hypometabolism (statistical parametric mapping analyses, false discovery rate corrected). We also showed a decreased expression of ELOVL5 in patients' blood at 40 weeks as compared to baseline. No side effect was recorded. INTERPRETATION: DHA supplementation is a safe and effective treatment for SCA38, showing an improvement of clinical symptoms and cerebellar hypometabolism. Ann Neurol 2017;82:615-621.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Ataxias Espinocerebelosas/tratamiento farmacológico , Adulto , Ataxinas/genética , Encéfalo/diagnóstico por imagen , Método Doble Ciego , Electromiografía , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Evaluación de Resultado en la Atención de Salud , Tomografía de Emisión de Positrones , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA