Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115.685
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 184(4): 912-930.e20, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571430

RESUMEN

Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Conducta Animal/fisiología , Fenómenos Biomecánicos/fisiología , Estimulación Eléctrica , Haplorrinos , Corteza Motora/fisiopatología , Redes Neurales de la Computación , Neuronas/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
2.
Cell ; 181(4): 774-783.e5, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413298

RESUMEN

A visual cortical prosthesis (VCP) has long been proposed as a strategy for restoring useful vision to the blind, under the assumption that visual percepts of small spots of light produced with electrical stimulation of visual cortex (phosphenes) will combine into coherent percepts of visual forms, like pixels on a video screen. We tested an alternative strategy in which shapes were traced on the surface of visual cortex by stimulating electrodes in dynamic sequence. In both sighted and blind participants, dynamic stimulation enabled accurate recognition of letter shapes predicted by the brain's spatial map of the visual world. Forms were presented and recognized rapidly by blind participants, up to 86 forms per minute. These findings demonstrate that a brain prosthetic can produce coherent percepts of visual forms.


Asunto(s)
Ceguera/fisiopatología , Visión Ocular/fisiología , Percepción Visual/fisiología , Adulto , Estimulación Eléctrica/métodos , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosfenos , Corteza Visual/metabolismo , Corteza Visual/fisiología , Prótesis Visuales
3.
Cell ; 173(4): 934-945.e12, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29606354

RESUMEN

Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Fusión de Membrana/fisiología , Actinas/metabolismo , Animales , Calcio/metabolismo , Bovinos , Membrana Celular/química , Células Cromafines/citología , Células Cromafines/metabolismo , Dinaminas/metabolismo , Estimulación Eléctrica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Masculino , Microscopía Confocal , Modelos Biológicos , Técnicas de Placa-Clamp , Vesículas Secretoras/fisiología
4.
Cell ; 173(1): 166-180.e14, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502969

RESUMEN

Brain-wide fluctuations in local field potential oscillations reflect emergent network-level signals that mediate behavior. Cracking the code whereby these oscillations coordinate in time and space (spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into how the brain signals emotional pathology. Using machine learning, we discover a spatiotemporal dynamic network that predicts the emergence of major depressive disorder (MDD)-related behavioral dysfunction in mice subjected to chronic social defeat stress. Activity patterns in this network originate in prefrontal cortex and ventral striatum, relay through amygdala and ventral tegmental area, and converge in ventral hippocampus. This network is increased by acute threat, and it is also enhanced in three independent models of MDD vulnerability. Finally, we demonstrate that this vulnerability network is biologically distinct from the networks that encode dysfunction after stress. Thus, these findings reveal a convergent mechanism through which MDD vulnerability is mediated in the brain.


Asunto(s)
Encéfalo/fisiología , Depresión/patología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrodos Implantados , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Ketamina/farmacología , Aprendizaje Automático , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenómenos Fisiológicos/efectos de los fármacos , Corteza Prefrontal/fisiología , Estrés Psicológico
5.
Nature ; 629(8014): 1041-1046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720078

RESUMEN

Electrocaloric1,2 and electrostrictive3,4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration5. Despite a handful of numerical models and schematic presentations6,7, current electrocaloric refrigerators still rely on external accessories to drive the working bodies8-10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g-1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.


Asunto(s)
Polímeros , Refrigeración , Termodinámica , Refrigeración/instrumentación , Polímeros/química , Frío , Electricidad , Diseño de Equipo , Estimulación Eléctrica , Temperatura
6.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
7.
Nature ; 611(7936): 540-547, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352232

RESUMEN

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Asunto(s)
Neuronas , Parálisis , Traumatismos de la Médula Espinal , Médula Espinal , Caminata , Animales , Humanos , Ratones , Neuronas/fisiología , Parálisis/genética , Parálisis/fisiopatología , Parálisis/terapia , Médula Espinal/citología , Médula Espinal/fisiología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Caminata/fisiología , Estimulación Eléctrica , Región Lumbosacra/inervación , Rehabilitación Neurológica , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
8.
Nature ; 591(7850): 426-430, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33473212

RESUMEN

Active forgetting is an essential component of the memory management system of the brain1. Forgetting can be permanent, in which prior memory is lost completely, or transient, in which memory exists in a temporary state of impaired retrieval. Temporary blocks on memory seem to be universal, and can disrupt an individual's plans, social interactions and ability to make rapid, flexible and appropriate choices. However, the neurobiological mechanisms that cause transient forgetting are unknown. Here we identify a single dopamine neuron in Drosophila that mediates the memory suppression that results in transient forgetting. Artificially activating this neuron did not abolish the expression of long-term memory. Instead, it briefly suppressed memory retrieval, with the memory becoming accessible again over time. The dopamine neuron modulates memory retrieval by stimulating a unique dopamine receptor that is expressed in a restricted physical compartment of the axons of mushroom body neurons. This mechanism for transient forgetting is triggered by the presentation of interfering stimuli immediately before retrieval.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Recuerdo Mental/fisiología , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Condicionamiento Psicológico , Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Estimulación Eléctrica , Femenino , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Odorantes , Receptores de Dopamina D1/metabolismo , Factores de Tiempo
9.
J Immunol ; 212(2): 335-345, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047899

RESUMEN

Although electric field-induced cell membrane permeabilization (electroporation) is used in a wide range of clinical applications from cancer therapy to cardiac ablation, the cellular- and molecular-level details of the processes that determine the success or failure of these treatments are poorly understood. Nanosecond pulsed electric field (nsPEF)-based tumor therapies are known to have an immune component, but whether and how immune cells sense the electroporative damage and respond to it have not been demonstrated. Damage- and pathogen-associated stresses drive inflammation via activation of cytosolic multiprotein platforms known as inflammasomes. The assembly of inflammasome complexes triggers caspase-1-dependent secretion of IL-1ß and in many settings a form of cell death called pyroptosis. In this study we tested the hypothesis that the nsPEF damage is sensed intracellularly by the NLRP3 inflammasome. We found that 200-ns PEFs induced aggregation of the inflammasome adaptor protein ASC, activation of caspase-1, and triggered IL-1ß release in multiple innate immune cell types (J774A.1 macrophages, bone marrow-derived macrophages, and dendritic cells) and in vivo in mouse skin. Efflux of potassium from the permeabilized cell plasma membrane was partially responsible for nsPEF-induced inflammasome activation. Based on results from experiments using both the NRLP3-specific inhibitor MCC950 and NLRP3 knockout cells, we propose that the damage created by nsPEFs generates a set of stimuli for the inflammasome and that more than one sensor can drive IL-1ß release in response to electrical pulse stimulation. This study shows, to our knowledge, for the first time, that PEFs activate the inflammasome, suggesting that this pathway alarms the immune system after treatment.


Asunto(s)
Inflamasomas , Interleucina-1beta , Macrófagos , Piel , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Animales , Ratones , Piel/inmunología , Células HEK293 , Humanos , Línea Celular , Gasderminas/inmunología , Estimulación Eléctrica , Macrófagos/inmunología , Inmunidad Innata/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
10.
Nature ; 583(7814): 103-108, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494012

RESUMEN

The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear how the representation of visual objects is organized in this part of the brain. Areas that are selective for categories such as faces, bodies, and scenes have been found1-5, but large parts of IT cortex lack any known specialization, raising the question of what general principle governs IT organization. Here we used functional MRI, microstimulation, electrophysiology, and deep networks to investigate the organization of macaque IT cortex. We built a low-dimensional object space to describe general objects using a feedforward deep neural network trained on object classification6. Responses of IT cells to a large set of objects revealed that single IT cells project incoming objects onto specific axes of this space. Anatomically, cells were clustered into four networks according to the first two components of their preferred axes, forming a map of object space. This map was repeated across three hierarchical stages of increasing view invariance, and cells that comprised these maps collectively harboured sufficient coding capacity to approximately reconstruct objects. These results provide a unified picture of IT organization in which category-selective regions are part of a coarse map of object space whose dimensions can be extracted from a deep network.


Asunto(s)
Modelos Neurológicos , Percepción Espacial/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Animales , Estimulación Eléctrica , Macaca mulatta/fisiología , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Lóbulo Temporal/anatomía & histología
11.
Nature ; 588(7838): 450-453, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33139951

RESUMEN

In the eighteenth century, Daniel Bernoulli, Adam Smith and Jeremy Bentham proposed that economic choices rely on the computation and comparison of subjective values1. This hypothesis continues to inform modern economic theory2 and research in behavioural economics3, but behavioural measures are ultimately not sufficient to verify the proposal4. Consistent with the hypothesis, when agents make choices, neurons in the orbitofrontal cortex (OFC) encode the subjective value of offered and chosen goods5. Value-encoding cells integrate multiple dimensions6-9, variability in the activity of each cell group correlates with variability in choices10,11 and the population dynamics suggests the formation of a decision12. However, it is unclear whether these neural processes are causally related to choices. More generally, the evidence linking economic choices to value signals in the brain13-15 remains correlational16. Here we show that neuronal activity in the OFC is causal to economic choices. We conducted two experiments using electrical stimulation in rhesus monkeys (Macaca mulatta). Low-current stimulation increased the subjective value of individual offers and thus predictably biased choices. Conversely, high-current stimulation disrupted both the computation and the comparison of subjective values, and thus increased choice variability. These results demonstrate a causal chain linking subjective values encoded in OFC to valuation and choice.


Asunto(s)
Ciencias Bioconductuales , Toma de Decisiones/fisiología , Economía , Modelos Neurológicos , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Animales , Conductividad Eléctrica , Estimulación Eléctrica , Electrodos , Macaca mulatta/fisiología , Masculino , Neuronas/fisiología
12.
Proc Natl Acad Sci U S A ; 120(42): e2307380120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831740

RESUMEN

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 µm and reaches the 27 µm limit of natural resolution in rats with 20 µm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.


Asunto(s)
Poríferos , Neuronas Retinianas , Prótesis Visuales , Humanos , Ratas , Animales , Implantación de Prótesis , Retina/fisiología , Visión Ocular , Estimulación Eléctrica
13.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38866486

RESUMEN

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation-induced (ES; 60 Hz) DA release was recorded in the NAc of single- or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than that in males. Finally, DA release following ES of the medial forebrain bundle at 60 Hz was studied over 4 weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, and sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.


Asunto(s)
Cuerpo Estriado , Dopamina , Estimulación Eléctrica , Núcleo Accumbens , Caracteres Sexuales , Animales , Masculino , Núcleo Accumbens/metabolismo , Femenino , Dopamina/metabolismo , Ratas , Cuerpo Estriado/metabolismo , Estimulación Eléctrica/métodos , Ratas Sprague-Dawley , Vivienda para Animales , Ovariectomía , Metanfetamina/farmacología
14.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38326038

RESUMEN

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Asunto(s)
Giro Dentado , Potenciación a Largo Plazo , Masculino , Ratones , Animales , Potenciación a Largo Plazo/fisiología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Estimulación Eléctrica/métodos
15.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358021

RESUMEN

Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.


Asunto(s)
Corteza Somatosensorial , Humanos , Corteza Somatosensorial/fisiología , Retroalimentación Sensorial/fisiología , Investigación Biomédica Traslacional/tendencias , Investigación Biomédica Traslacional/métodos , Prótesis Neurales , Interfaces Cerebro-Computador/tendencias , Estimulación Eléctrica/métodos , Prótesis e Implantes/tendencias
16.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438259

RESUMEN

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Asunto(s)
Estimulación Eléctrica , Oxitocina , Núcleo Hipotalámico Paraventricular , Ratas Wistar , Receptores de Oxitocina , Transmisión Sináptica , Animales , Masculino , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Oxitocina/metabolismo , Oxitocina/análogos & derivados , Ratas , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/antagonistas & inhibidores , Transmisión Sináptica/fisiología , Nociceptores/fisiología , Nociceptores/metabolismo , Nocicepción/fisiología , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Meninges/fisiología , Inhibición Neural/fisiología
17.
Mol Psychiatry ; 29(5): 1228-1240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38317012

RESUMEN

Transcranial magnetic stimulation (TMS) is increasingly used as a noninvasive technique for neuromodulation in research and clinical applications, yet its mechanisms are not well understood. Here, we present the neurophysiological effects of TMS using intracranial electrocorticography (iEEG) in neurosurgical patients. We first evaluated safety in a gel-based phantom. We then performed TMS-iEEG in 22 neurosurgical participants with no adverse events. We next evaluated intracranial responses to single pulses of TMS to the dorsolateral prefrontal cortex (dlPFC) (N = 10, 1414 electrodes). We demonstrate that TMS is capable of inducing evoked potentials both locally within the dlPFC and in downstream regions functionally connected to the dlPFC, including the anterior cingulate and insular cortex. These downstream effects were not observed when stimulating other distant brain regions. Intracranial dlPFC electrical stimulation had similar timing and downstream effects as TMS. These findings support the safety and promise of TMS-iEEG in humans to examine local and network-level effects of TMS with higher spatiotemporal resolution than currently available methods.


Asunto(s)
Electrocorticografía , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Electrocorticografía/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Encéfalo/fisiología , Encéfalo/fisiopatología , Corteza Prefontal Dorsolateral/fisiología , Mapeo Encefálico/métodos , Potenciales Evocados/fisiología , Adulto Joven , Estimulación Eléctrica/métodos
18.
PLoS Comput Biol ; 20(7): e1011826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38995970

RESUMEN

Electrical stimulation of peripheral nerves has been used in various pathological contexts for rehabilitation purposes or to alleviate the symptoms of neuropathologies, thus improving the overall quality of life of patients. However, the development of novel therapeutic strategies is still a challenging issue requiring extensive in vivo experimental campaigns and technical development. To facilitate the design of new stimulation strategies, we provide a fully open source and self-contained software framework for the in silico evaluation of peripheral nerve electrical stimulation. Our modeling approach, developed in the popular and well-established Python language, uses an object-oriented paradigm to map the physiological and electrical context. The framework is designed to facilitate multi-scale analysis, from single fiber stimulation to whole multifascicular nerves. It also allows the simulation of complex strategies such as multiple electrode combinations and waveforms ranging from conventional biphasic pulses to more complex modulated kHz stimuli. In addition, we provide automated support for stimulation strategy optimization and handle the computational backend transparently to the user. Our framework has been extensively tested and validated with several existing results in the literature.


Asunto(s)
Biología Computacional , Simulación por Computador , Nervios Periféricos , Programas Informáticos , Nervios Periféricos/fisiología , Humanos , Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/métodos , Modelos Neurológicos
19.
Brain ; 147(2): 406-413, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796028

RESUMEN

Neurophysiological methods are used widely to gain information about motor neuron excitability and axon conduction in neurodegenerative diseases. The F-wave is a common biomarker used to test motor neuron properties in the diagnosis of neurological diseases. Although the origin of the F-wave is a subject of debate, the most widely accepted mechanism posits that the F-wave is generated by the backfiring of motor neurons stimulated antidromically from the periphery. In this study, we developed an ex vivo mouse sciatic nerve-attached spinal cord preparation with sensory axons severed. In this preparation, stimulation of the whole sciatic nerve or its tibial branch evoked responses with the electrophysiological signatures of F-waves. Manipulations of synaptic transmission by either removal of extracellular calcium or block of post-synaptic glutamate receptors abolished these responses. These results suggest that F-waves are mediated by spinal microcircuits activated by recurrent motor axon collaterals via glutamatergic synapses.


Asunto(s)
Enfermedades del Sistema Nervioso , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Ratones , Neuronas Motoras/fisiología , Transmisión Sináptica , Sinapsis , Médula Espinal , Estimulación Eléctrica
20.
Brain ; 147(9): 3018-3031, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38365267

RESUMEN

Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.


Asunto(s)
Emociones , Expresión Facial , Humanos , Emociones/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Mapeo Encefálico/métodos , Estimulación Eléctrica , Corteza Insular/diagnóstico por imagen , Corteza Insular/fisiología , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA