Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137.501
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2652-2656, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788688

RESUMEN

Mechanobiology-the field studying how cells produce, sense, and respond to mechanical forces-is pivotal in the analysis of how cells and tissues take shape in development and disease. As we venture into the future of this field, pioneers share their insights, shaping the trajectory of future research and applications.


Asunto(s)
Biofisica , Animales , Humanos , Fenómenos Biomecánicos , Forma de la Célula , Mecanotransducción Celular
2.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38838668

RESUMEN

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Asunto(s)
Mecanotransducción Celular , Imagen Individual de Molécula , Animales , Humanos , Ratones , Fenómenos Biomecánicos , Adhesión Celular , ADN/química , ADN/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Línea Celular , Supervivencia Celular , Emparejamiento Base , Calibración
3.
Cell ; 186(23): 4994-4995, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949055

RESUMEN

Mechanobiology explores how cells sense and respond to mechanical cues and how mechanics guide cell function, physiology, and disease. In this issue of Cell, Thacker and colleagues reveal how the tuberculosis-causing pathogen exploits the mechanical behavior of cord-like structures to promote infection, impacting immune response, antibiotic susceptibility, and treatment strategies.


Asunto(s)
Fenómenos Biomecánicos , Mycobacterium tuberculosis , Humanos , Biofisica , Tuberculosis/microbiología , Mycobacterium tuberculosis/fisiología
4.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37865090

RESUMEN

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Biopelículas , Pulmón/microbiología , Pulmón/patología , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Tuberculosis/patología , Virulencia , Fenómenos Biomecánicos
5.
Nat Rev Mol Cell Biol ; 25(8): 654-670, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600372

RESUMEN

From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.


Asunto(s)
Homeostasis , Humanos , Animales , Homeostasis/fisiología , Fenómenos Biomecánicos , Desarrollo Embrionario/fisiología , Regeneración/fisiología , Cicatrización de Heridas/fisiología
6.
Cell ; 184(26): 6213-6216, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34942094

RESUMEN

This year's Nobel Prize in Physiology or Medicine was awarded to David Julius and Ardem Patapoutian for "explaining the molecular basis for sensing heat, cold and mechanical force." Their findings capped off a scientific quest to identify the mechanisms within the somatosensory system mediating the detection of internal and external environments.


Asunto(s)
Canales Iónicos/metabolismo , Sensación/fisiología , Animales , Fenómenos Biomecánicos , Capsaicina/farmacología , Humanos , Premio Nobel , Tacto/fisiología
7.
Cell ; 184(4): 912-930.e20, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571430

RESUMEN

Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Conducta Animal/fisiología , Fenómenos Biomecánicos/fisiología , Estimulación Eléctrica , Haplorrinos , Corteza Motora/fisiopatología , Redes Neurales de la Computación , Neuronas/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
8.
Annu Rev Biochem ; 89: 605-636, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569521

RESUMEN

ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Bacterias/metabolismo , Membrana Celular/metabolismo , Resistencia a Múltiples Medicamentos/genética , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Sitios de Unión , Transporte Biológico , Fenómenos Biomecánicos , Membrana Celular/efectos de los fármacos , Humanos , Cinética , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Especificidad por Sustrato , Xenobióticos/metabolismo , Xenobióticos/farmacología
9.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169021

RESUMEN

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Miosinas/metabolismo , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Infecciones por Protozoos/tratamiento farmacológico , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Fenómenos Biomecánicos , Cryptosporidium/efectos de los fármacos , Cryptosporidium/enzimología , Inhibidores Enzimáticos/química , Expresión Génica , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Familia de Multigenes , Mutación , Miosinas/antagonistas & inhibidores , Miosinas/clasificación , Miosinas/genética , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Infecciones por Protozoos/enzimología , Infecciones por Protozoos/genética , Infecciones por Protozoos/patología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología
10.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866069

RESUMEN

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Asunto(s)
Células Madre Adultas/metabolismo , Fibrosis Pulmonar Idiopática/etiología , Alveolos Pulmonares/metabolismo , Células Madre Adultas/patología , Anciano , Células Epiteliales Alveolares/patología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Alveolos Pulmonares/patología , Regeneración , Transducción de Señal , Células Madre/patología , Estrés Mecánico , Estrés Fisiológico/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
11.
Cell ; 178(1): 12-25, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251912

RESUMEN

There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Retroalimentación Fisiológica , Animales , Tamaño de la Célula , Citoesqueleto/fisiología , Matriz Extracelular/fisiología , Humanos , Conformación Proteica , Reología
12.
Annu Rev Cell Dev Biol ; 36: 385-410, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32628862

RESUMEN

Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.


Asunto(s)
Morfogénesis , Especificidad de Órganos , Animales , Anisotropía , Fenómenos Biomecánicos , Humanos , Mecanotransducción Celular , Modelos Biológicos
13.
Annu Rev Cell Dev Biol ; 36: 61-83, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603614

RESUMEN

The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.


Asunto(s)
Axones/fisiología , Química , Animales , Orientación del Axón/fisiología , Fenómenos Biomecánicos , Conos de Crecimiento/fisiología , Humanos , Modelos Biológicos
14.
Nat Rev Mol Cell Biol ; 22(4): 245-265, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33483696

RESUMEN

How the shape of embryos and organs emerges during development is a fundamental question that has fascinated scientists for centuries. Tissue dynamics arise from a small set of cell behaviours, including shape changes, cell contact remodelling, cell migration, cell division and cell extrusion. These behaviours require control over cell mechanics, namely active stresses associated with protrusive, contractile and adhesive forces, and hydrostatic pressure, as well as material properties of cells that dictate how cells respond to active stresses. In this Review, we address how cell mechanics and the associated cell behaviours are robustly organized in space and time during tissue morphogenesis. We first outline how not only gene expression and the resulting biochemical cues, but also mechanics and geometry act as sources of morphogenetic information to ultimately define the time and length scales of the cell behaviours driving morphogenesis. Next, we present two idealized modes of how this information flows - how it is read out and translated into a biological effect - during morphogenesis. The first, akin to a programme, follows deterministic rules and is hierarchical. The second follows the principles of self-organization, which rests on statistical rules characterizing the system's composition and configuration, local interactions and feedback. We discuss the contribution of these two modes to the mechanisms of four very general classes of tissue deformation, namely tissue folding and invagination, tissue flow and extension, tissue hollowing and, finally, tissue branching. Overall, we suggest a conceptual framework for understanding morphogenetic information that encapsulates genetics and biochemistry as well as mechanics and geometry as information modules, and the interplay of deterministic and self-organized mechanisms of their deployment, thereby diverging considerably from the traditional notion that shape is fully encoded and determined by genes.


Asunto(s)
Morfogénesis/genética , Animales , Fenómenos Bioquímicos/genética , Fenómenos Biomecánicos/genética , Expresión Génica/genética , Humanos
15.
Nat Rev Mol Cell Biol ; 22(12): 777-795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34408299

RESUMEN

Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.


Asunto(s)
Microtúbulos/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
16.
Annu Rev Cell Dev Biol ; 35: 213-237, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31412210

RESUMEN

Microorganisms often live in habitats characterized by fluid flow, from lakes and oceans to soil and the human body. Bacteria and plankton experience a broad range of flows, from the chaotic motion characteristic of turbulence to smooth flows at boundaries and in confined environments. Flow creates forces and torques that affect the movement, behavior, and spatial distribution of microorganisms and shapes the chemical landscape on which they rely for nutrient acquisition and communication. Methodological advances and closer interactions between physicists and biologists have begun to reveal the importance of flow-microorganism interactions and the adaptations of microorganisms to flow. Here we review selected examples of such interactions from bacteria, phytoplankton, larvae, and zooplankton. We hope that this article will serve as a blueprint for a more in-depth consideration of the effects of flow in the biology of microorganisms and that this discussion will stimulate further multidisciplinary effort in understanding this important component of microorganism habitats.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Fenómenos Biomecánicos , Plancton/fisiología , Microbiología del Agua , Animales , Biopelículas , Invertebrados/crecimiento & desarrollo , Invertebrados/fisiología , Percepción de Quorum
17.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648660

RESUMEN

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Asunto(s)
Endocitosis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Animales , Fenómenos Biomecánicos , Fricción , Humanos , Metabolismo de los Lípidos , Dominios Proteicos , Ratas
18.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107331

RESUMEN

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animales , Fenómenos Biomecánicos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Ratones , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP
19.
Physiol Rev ; 104(3): 983-1020, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385888

RESUMEN

Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.


Asunto(s)
Evolución Biológica , Dedos , Humanos , Fenómenos Biomecánicos , Dedos/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Neurobiología , Desempeño Psicomotor/fisiología
20.
Cell ; 165(7): 1820-1820.e1, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315485

RESUMEN

Cells sense and respond to properties of their microenvironment that can affect cell morphology, protein levels and localization, gene expression, and even nuclear integrity. Tissue micro-stiffness, largely influenced by extracellular matrix, varies dramatically within an organism and can be a useful parameter to both clarify and organize a wide range of cell and molecular processes, such as genomic changes in cancer.


Asunto(s)
Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Matriz Extracelular/metabolismo , Animales , Forma de la Célula , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA