Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.234
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(17): 4480-4494.e15, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34320407

RESUMEN

In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.


Asunto(s)
Fagocitosis , Fosfofructoquinasa-1 Tipo Hepático/metabolismo , Estallido Respiratorio , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Proteínas de Unión a Fosfato/metabolismo , Fosfofructoquinasa-1 Tipo Hepático/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo Hepático/ultraestructura , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/aislamiento & purificación , Estallido Respiratorio/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
2.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454645

RESUMEN

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cell ; 153(2): 293-305, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582321

RESUMEN

Allostery is largely associated with conformational and functional transitions in individual proteins. This concept can be extended to consider the impact of conformational perturbations on cellular function and disease states. Here, we clarify the concept of allostery and how it controls physiological activities. We focus on the challenging questions of how allostery can both cause disease and contribute to development of new therapeutics. We aim to increase the awareness of the linkage between disease symptoms on the cellular level and specific aberrant allosteric actions on the molecular level and to emphasize the potential of allosteric drugs in innovative therapies.


Asunto(s)
Sitio Alostérico , Enfermedad/genética , Descubrimiento de Drogas , Conformación Proteica , Regulación Alostérica , Animales , Quimioterapia , Enzimas , Humanos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transducción de Señal , Termodinámica
4.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619402

RESUMEN

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300868

RESUMEN

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Conductos Biliares Intrahepáticos/metabolismo , Diarrea , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
6.
Proc Natl Acad Sci U S A ; 121(19): e2322934121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701119

RESUMEN

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.


Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Endometriosis/tratamiento farmacológico , Endometriosis/metabolismo , Endometriosis/patología , ADN/metabolismo , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptor EphA2/metabolismo , Receptor EphA2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Movimiento Celular/efectos de los fármacos
7.
Annu Rev Biochem ; 80: 769-95, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21548788

RESUMEN

Kinases are highly regulated enzymes with diverse mechanisms controlling their catalytic output. Over time, chemical discovery efforts for kinases have produced ATP-competitive compounds, allosteric regulators, irreversible binders, and highly specific inhibitors. These distinct classes of small molecules have revealed many novel aspects about kinase-mediated signaling, and some have progressed from simple tool compounds into clinically validated therapeutics. This review explores several small-molecule inhibitors for kinases highlighting elaborate mechanisms by which kinase function is modulated. A complete surprise of targeted kinase drug discovery has been the finding of ATP-competitive inhibitors that behave as agonists, rather than antagonists, of their direct kinase target. These studies hint at a connection between ATP-binding site occupancy and networks of communication that are independent of kinase catalysis. Indeed, kinase inhibitors that induce changes in protein localization, protein-protein interactions, and even enhancement of catalytic activity of the target kinase have been found. The relevance of these findings to the therapeutic efficacy of kinase inhibitors and to the future identification of new classes of drug targets is discussed.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biología Computacional , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Neoplasias/enzimología , Neoplasias/genética , Conformación Proteica , Proteínas Quinasas/genética , Alineación de Secuencia
8.
Nature ; 588(7838): 509-514, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32927473

RESUMEN

The MAPK/ERK kinase MEK is a shared effector of the frequent cancer drivers KRAS and BRAF that has long been pursued as a drug target in oncology1, and more recently in immunotherapy2,3 and ageing4. However, many MEK inhibitors are limited owing to on-target toxicities5-7 and drug resistance8-10. Accordingly, a molecular understanding of the structure and function of MEK within physiological complexes could provide a template for the design of safer and more effective therapies. Here we report X-ray crystal structures of MEK bound to the scaffold KSR (kinase suppressor of RAS) with various MEK inhibitors, including the clinical drug trametinib. The structures reveal an unexpected mode of binding in which trametinib directly engages KSR at the MEK interface. In the bound complex, KSR remodels the prototypical allosteric pocket of the MEK inhibitor, thereby affecting binding and kinetics, including the drug-residence time. Moreover, trametinib binds KSR-MEK but disrupts the related RAF-MEK complex through a mechanism that exploits evolutionarily conserved interface residues that distinguish these sub-complexes. On the basis of these insights, we created trametiglue, which limits adaptive resistance to MEK inhibition by enhancing interfacial binding. Our results reveal the plasticity of an interface pocket within MEK sub-complexes and have implications for the design of next-generation drugs that target the RAS pathway.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato , Quinasas raf/química , Quinasas raf/metabolismo
9.
Nucleic Acids Res ; 52(W1): W489-W497, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38752486

RESUMEN

Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/.


Asunto(s)
Internet , Polifarmacología , Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/genética , Humanos , Programas Informáticos , Algoritmos , Inteligencia Artificial , Descubrimiento de Drogas/métodos
10.
Proc Natl Acad Sci U S A ; 120(8): e2213090120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791110

RESUMEN

Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas Receptoras , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Neoplasias/tratamiento farmacológico , Mutación , Adenosina Trifosfato/uso terapéutico , Tirosina , Inhibidores de Proteínas Quinasas/química
11.
Proc Natl Acad Sci U S A ; 120(34): e2304611120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590418

RESUMEN

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.


Asunto(s)
Aurora Quinasa A , Mesilato de Imatinib , Niacinamida , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-abl , Humanos , Cristalografía por Rayos X , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacología , Niacinamida/química , Niacinamida/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/química , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
12.
J Biol Chem ; 300(3): 105679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272219

RESUMEN

Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Butanonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Humanos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
13.
J Biol Chem ; 300(5): 107201, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508313

RESUMEN

The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica , Modelos Moleculares , Proteínas Quinasas
14.
J Biol Chem ; 300(9): 107615, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089584

RESUMEN

NXP900 is a selective and potent SRC family kinase (SFK) inhibitor, currently being dosed in a phase 1 clinical trial, that locks SRC in the "closed" conformation, thereby inhibiting both kinase-dependent catalytic activity and kinase-independent functions. In contrast, several multi-targeted kinase inhibitors that inhibit SRC, including dasatinib and bosutinib, bind their target in the active "open" conformation, allowing SRC and other SFKs to act as a scaffold to promote tumorigenesis through non-catalytic functions. NXP900 exhibits a unique target selectivity profile with sub-nanomolar activity against SFK members over other kinases. This results in highly potent and specific SFK pathway inhibition. Here, we demonstrate that esophageal squamous cell carcinomas and head and neck squamous cell carcinomas are exquisitely sensitive to NXP900 treatment in cell culture and in vivo, and we identify a patient population that could benefit from treatment with NXP900.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Inhibidores de Proteínas Quinasas , Familia-src Quinasas , Humanos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Benzamidas/farmacología , Benzamidas/química , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Femenino , Acetamidas , Morfolinas , Piridinas
15.
PLoS Comput Biol ; 20(7): e1012302, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046952

RESUMEN

Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs that are related to the catalytic activity of the kinase. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the active or inactive kinase conformation(s) they bind. Modern AI-based structural modeling methods have the potential to expand upon the limited availability of experimentally determined kinase structures in inactive states. Here, we first explored the conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) and ESMFold, two prominent AI-based protein structure prediction methods. Our investigation of AF2's ability to explore the conformational diversity of the kinome at various multiple sequence alignment (MSA) depths showed a bias within the predicted structures of kinases in DFG-in conformations, particularly those controlled by the DFG motif, based on their overabundance in the PDB. We demonstrate that predicting kinase structures using AF2 at lower MSA depths explored these alternative conformations more extensively, including identifying previously unobserved conformations for 398 kinases. Ligand enrichment analyses for 23 kinases showed that, on average, docked models distinguished between active molecules and decoys better than random (average AUC (avgAUC) of 64.58), but select models perform well (e.g., avgAUCs for PTK2 and JAK2 were 79.28 and 80.16, respectively). Further analysis explained the ligand enrichment discrepancy between low- and high-performing kinase models as binding site occlusions that would preclude docking. The overall results of our analyses suggested that, although AF2 explored previously uncharted regions of the kinase conformational space and select models exhibited enrichment scores suitable for rational drug discovery, rigorous refinement of AF2 models is likely still necessary for drug discovery campaigns.


Asunto(s)
Biología Computacional , Conformación Proteica , Proteínas Quinasas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Modelos Moleculares , Ligandos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bases de Datos de Proteínas , Humanos , Alineación de Secuencia
16.
PLoS Comput Biol ; 20(5): e1012100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768223

RESUMEN

The activities of most enzymes and drugs depend on interactions between proteins and small molecules. Accurate prediction of these interactions could greatly accelerate pharmaceutical and biotechnological research. Current machine learning models designed for this task have a limited ability to generalize beyond the proteins used for training. This limitation is likely due to a lack of information exchange between the protein and the small molecule during the generation of the required numerical representations. Here, we introduce ProSmith, a machine learning framework that employs a multimodal Transformer Network to simultaneously process protein amino acid sequences and small molecule strings in the same input. This approach facilitates the exchange of all relevant information between the two molecule types during the computation of their numerical representations, allowing the model to account for their structural and functional interactions. Our final model combines gradient boosting predictions based on the resulting multimodal Transformer Network with independent predictions based on separate deep learning representations of the proteins and small molecules. The resulting predictions outperform recently published state-of-the-art models for predicting protein-small molecule interactions across three diverse tasks: predicting kinase inhibitions; inferring potential substrates for enzymes; and predicting Michaelis constants KM. The Python code provided can be used to easily implement and improve machine learning predictions involving arbitrary protein-small molecule interactions.


Asunto(s)
Biología Computacional , Aprendizaje Automático , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Especificidad por Sustrato , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas/metabolismo , Proteínas/química , Secuencia de Aminoácidos , Aprendizaje Profundo , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Humanos
17.
Proc Natl Acad Sci U S A ; 119(28): e2206113119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867764

RESUMEN

The Hippo signaling pathway acts as a brake on regeneration in many tissues. This cascade of kinases culminates in the phosphorylation of the transcriptional cofactors Yap and Taz, whose concentration in the nucleus consequently remains low. Various types of cellular signals can reduce phosphorylation, however, resulting in the accumulation of Yap and Taz in the nucleus and subsequently in mitosis. We earlier identified a small molecule, TRULI, that blocks the final kinases in the pathway, Lats1 and Lats2, and thus elicits proliferation of several cell types that are ordinarily postmitotic and aids regeneration in mammals. In the present study, we present the results of chemical modification of the original compound and demonstrate that a derivative, TDI-011536, is an effective blocker of Lats kinases in vitro at nanomolar concentrations. The compound fosters extensive proliferation in retinal organoids derived from human induced pluripotent stem cells. Intraperitoneal administration of the substance to mice suppresses Yap phosphorylation for several hours and induces transcriptional activation of Yap target genes in the heart, liver, and skin. Moreover, the compound initiates the proliferation of cardiomyocytes in adult mice following cardiac cryolesions. After further chemical refinement, related compounds might prove useful in protective and regenerative therapies.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Regeneración , Animales , Proliferación Celular/efectos de los fármacos , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/genética , Regeneración Hepática/fisiología , Ratones , Organoides/fisiología , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Regeneración/genética , Retina/fisiología , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel/genética , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Proteínas Señalizadoras YAP/metabolismo
18.
Med Res Rev ; 44(4): 1545-1565, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38279970

RESUMEN

Overexpression of the epidermal growth factor receptor (EGFR, erbB1) has been observed in a wide range of solid tumors and has frequently been associated with poor prognosis. As a result, EGFR inhibition has become an attractive anticancer drug design strategy, and a large number of small molecular inhibitors have been developed. Despite the widespread clinical use of EGFR tyrosine kinase inhibitors (TKIs), their drug resistance, inadequate accumulation in tumors, and severe side effects have spurred the search for better antitumor drugs. Metal complexes have attracted much attention because of their different mechanisms compared with EGFR-TKIs. Therefore, the combination of metals and inhibitors is a promising anticancer strategy. For example, Ru and Pt centers are introduced to design complexes with double or multiple targets, while Au complexes are combined with inhibitors to overcome drug resistance. Co complexes are designed as prodrugs with weak side effects and enhanced targeting by the hypoxia activation strategy, and other metals such as Rh and Fe enhance the anticancer effect of the complexes. In addition, the introduction of Ga center is beneficial to the development of nuclear imaging tracers. In this paper, metal EGFR-TKI complexes in the last 15 years are reviewed, their mechanisms are briefly introduced, and their advantages are summarized.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Receptores ErbB , Inhibidores de Proteínas Quinasas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
19.
Biochemistry ; 63(20): 2594-2601, 2024 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-39315638

RESUMEN

Hematopoietic cell kinase (Hck) is a member of the Src kinase family and is a promising drug target in myeloid leukemias. Here, we report the crystal structure of human Hck in complex with the pyrrolopyrimidine inhibitor A-419259, determined at a resolution of 1.8 Å. This structure reveals the complete Hck active site in the presence of A-419259, including the αC-helix, the DFG motif, and the activation loop. A-419259 binds at the ATP-site of Hck and induces an overall closed conformation of the kinase with the regulatory SH3 and SH2 domains bound intramolecularly to their respective internal ligands. A-419259 stabilizes the DFG-in/αC-helix-out conformation observed previously with Hck and the pyrazolopyrimidine inhibitor PP1 (PDB: 1QCF). However, the activation loop conformations are distinct, with PP1 inducing a folded loop structure with the tyrosine autophosphorylation site (Tyr416) pointing into the ATP binding site, while A-419259 stabilizes an extended loop conformation with Tyr416 facing out into the solvent. Autophosphorylation also induces activation loop extension and significantly reduces the Hck sensitivity to PP1 but not A-419259. In cancer cells where Hck is constitutively active, the extended autophosphorylation loop may render Hck more sensitive to inhibitors like A-419259 which prefer this kinase conformation. More generally, these results provide additional insight into targeted kinase inhibitor design and how conformational preferences of inhibitors may impact selectivity and potency.


Asunto(s)
Adenosina Trifosfato , Conformación Proteica , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-hck , Pirimidinas , Humanos , Pirimidinas/química , Pirimidinas/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Proteínas Proto-Oncogénicas c-hck/química , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/química , Pirroles/farmacología , Modelos Moleculares , Dominio Catalítico , Sitios de Unión
20.
J Biol Chem ; 299(5): 104634, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963492

RESUMEN

Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.


Asunto(s)
Modelos Moleculares , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Línea Celular Tumoral , Cristalografía por Rayos X , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Estructura Molecular , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA