Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.927
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830671

RESUMEN

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Asunto(s)
Microbiota , Leche , Nutrientes , ARN Ribosómico 16S , Animales , Leche/microbiología , Nutrientes/metabolismo , ARN Ribosómico 16S/genética , Macaca mulatta/microbiología , Femenino , Cercopithecidae/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Evolución Biológica
2.
Anal Chem ; 96(14): 5727-5733, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546834

RESUMEN

Cronobacter sakazakii (C. sakazakii) is a widely existing opportunistic pathogen and thus threatens people with low immunity, especially infants. To prevent the outbreak, a rapid and accurate on-site testing method is required. The current standard culture-based method is time-consuming (3-4 days), while the nucleic acid amplification (PCR)-based detection is mostly carried out in central laboratories. Herein, isothermal recombinase polymerase amplification (RPA) coupled with a photosensitization colorimetric assay (PCA) was adopted for the on-site detection of C. sakazakii in powdered infant formulas (PIFs). The lowest visual detection concentration of C. sakazakii is 800 cfu/mL and 2 cfu/g after 8 h bacteria pre-enrichment. Furthermore, to avoid typical cap opening-resulted aerosol pollution, the PCA reagents were lyophilized onto the cap of the RPA tube (containing lyophilized RPA reagents). After amplification, the tube was subjected to simple shaking to mix the PCA reagents with the amplification products for light-driven color development. Such a one-tube assay offered a lowest concentration of 1000 copies of genomic DNA of C. sakazakii within 1 h. After 8 h of bacterial enrichment, the lowest detecting concentration could be pushed down to 5 cfu/g bacteria in PIF. To facilitate on-site monitoring, a portable, battery-powered PCA device was designed to mount the typical RPA 8-tube strip, and a color analysis cellphone APP was further employed for facile readout.


Asunto(s)
Cronobacter sakazakii , Lactante , Humanos , Animales , Polvos , Colorimetría , Microbiología de Alimentos , Recombinasas , Leche/microbiología , Fórmulas Infantiles , Nucleotidiltransferasas
3.
Anal Chem ; 96(28): 11334-11342, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38943569

RESUMEN

Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.


Asunto(s)
Técnicas Biosensibles , Gadolinio , Leche , Salmonella , Leche/microbiología , Leche/química , Gadolinio/química , Animales , Salmonella/aislamiento & purificación , Técnicas Biosensibles/métodos , Espectroscopía de Resonancia Magnética , Límite de Detección , Inmunoensayo/métodos
4.
Anal Chem ; 96(17): 6588-6598, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619494

RESUMEN

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Aprendizaje Automático , Listeria monocytogenes/aislamiento & purificación , Cronobacter sakazakii/aislamiento & purificación , Dióxido de Silicio/química , Sistemas de Atención de Punto , Animales , Leche/microbiología , Leche/química , Técnicas Biosensibles , Redes Neurales de la Computación
5.
Anal Chem ; 96(22): 9270-9277, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770656

RESUMEN

Developing a specific, sensitive, rapid, and on-site method for detecting pathogenic bacteria in food samples is critical to ensuring public safety. This article demonstrates a CRISPR/Cas13a system and a chemiluminescence resonance energy transfer (CRET) (CRISPR/Cas 13a-assisted CRET)-based strategy for sensitive and on-site detection of pathogenic bacteria in real samples. Once the hybrid double strand of aptamerS. aureus-cRNA recognizes the target model bacteria of Staphylococcus aureus (S. aureus), the released cRNA would bind with CRISPR/Cas 13a to form a complex of cRNA-CRISPR/Cas 13a, which could cleave the RNA molecule in the detecting probe of horseradish peroxidase (HRP) modified-gold nanoparticles (AuNPs) linked by RNA (AuNPs-RNA-HRP), resulting in an enhanced chemiluminescence signal due to the CRET "OFF" phenomenon after introducing the chemiluminescence substrate of luminol. The CRISPR/Cas 13a-assisted CRET strategy successfully detected S. aureus in drinking water and milk with detection limits of 20 and 30 cfu/mL, respectively, within the recovery of 90.07-105.50%. Furthermore, after integrating with an immunochromatographic test strip (ICTS), the CRISPR/Cas 13a-assisted CRET strategy achieved the on-site detection of as low as 102 cfu/mL of S. aureus in drinking water and milk via a smartphone, which is about 10 times lower than that in the previously reported AuNPs-based colorimetric ICTS, demonstrating a convenient and sensitive detection method for S. aureus in real samples.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Luminiscencia , Staphylococcus aureus , Animales , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , Agua Potable/microbiología , Oro/química , Límite de Detección , Mediciones Luminiscentes , Nanopartículas del Metal/química , Leche/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
6.
Anal Chem ; 96(21): 8543-8551, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748432

RESUMEN

In this study, the covalently fixed "end-on" orientation of a monoclonal Listeria monocytogenes antibody (mAb-Lis) to amino terminated oligo (ethylene glycol)-capped gold nanoparticles (NH2-TEG-AuNPs) was used to fabricate an in-house lateral flow strip (LFS), namely, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS. The aim was to evaluate the performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS in detecting L. monocytogenes. The proposed LFS enabled the sensitive detection of L. monocytogenes in 15 min with a visual limit of detection of 102 CFU/mL. Quantitative analysis indicated an LOD at 10 CFU/mL. The fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS showed no cross-reactivity with other pathogenic bacteria and practical performance across different food matrices, including human blood, milk, and mushroom samples. Furthermore, the clinical performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS for detecting L. monocytogenes was evaluated by using 12 clinical samples validated by the hemoculture method. It demonstrated excellent concordance with the reference methods, with no false-positive or false-negative results observed. Therefore, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS serves as a promising candidate for a point-of-care test (POCT), enabling the rapid, precise, and highly sensitive detection of L. monocytogenes in clinical samples and contaminated food.


Asunto(s)
Anticuerpos Monoclonales , Oro , Listeria monocytogenes , Nanopartículas del Metal , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/inmunología , Oro/química , Nanopartículas del Metal/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Humanos , Límite de Detección , Microbiología de Alimentos , Leche/microbiología , Leche/química , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Animales , Listeriosis/microbiología , Listeriosis/diagnóstico
7.
Appl Environ Microbiol ; 90(3): e0215223, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38334291

RESUMEN

The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE: This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.


Asunto(s)
Bacteriófagos , Lactobacillales , Lactococcus lactis , Animales , Lactococcus lactis/genética , Leche/microbiología , Bacteriófagos/genética , Fermentación
8.
Appl Environ Microbiol ; 90(9): e0112024, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39136492

RESUMEN

The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.


Asunto(s)
Bacteriófagos , Plásmidos , Plásmidos/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Fermentación , Leche/microbiología , Leche/virología , Lactococcus lactis/virología , Lactococcus lactis/genética , Lactococcus/virología , Lactococcus/genética , Microbiología de Alimentos
9.
Appl Environ Microbiol ; 90(3): e0227623, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319095

RESUMEN

Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE: The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.


Asunto(s)
Bacillus , Queso , Lactobacillales , Lactococcus lactis , Animales , Germinación , Queso/microbiología , ARN Ribosómico 16S/genética , Semillas , Lactobacillales/genética , Bacillus/genética , Microbiología de Alimentos , Lactococcus lactis/genética , Leche/microbiología
10.
Appl Environ Microbiol ; 90(9): e0124424, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39150265

RESUMEN

The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.


Asunto(s)
Bifidobacterium , Queso , Microbioma Gastrointestinal , Leche , Queso/microbiología , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium/crecimiento & desarrollo , Humanos , Leche/microbiología , Animales , Italia
11.
Appl Environ Microbiol ; 90(4): e0223423, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38497641

RESUMEN

The primary objective of this study was to identify associations between the prepartum teat apex microbiome and the presence of Staphylococcus aureus intramammary infections (IMI) in primiparous cows during the first 5 weeks after calving. We performed a case-control study using shotgun metagenomics of the teat apex and culture-based milk data collected longitudinally from 710 primiparous cows on five organic dairy farms. Cases had higher odds of having S. aureus metagenomic DNA on the teat apex prior to parturition compared to controls (OR = 38.9, 95% CI: 14.84-102.21). Differential abundance analysis confirmed this association, with cases having a 23.8 higher log fold change (LFC) in the abundance of S. aureus in their samples compared to controls. Of the most prevalent microorganisms in controls, those associated with a lower risk of post-calving S. aureus IMI included Microbacterium phage Min 1 (OR = 0.37, 95% CI: 0.25-0.53), Corynebacterium efficiens (OR = 0.53, 95% CI: 0.30-0.94), Kocuria polaris (OR = 0.54, 95% CI: 0.35-0.82), Micrococcus terreus (OR = 0.64, 95% CI: 0.44-0.93), and Dietzia alimentaria (OR = 0.45, 95% CI: 0.26-0.75). Genes encoding for Microcin B17 AMPs were the most prevalent on the teat apex of cases and controls (99.7% in both groups). The predicted abundance of genes encoding for Microcin B17 was also higher in cases compared to controls (LFC 0.26). IMPORTANCE: Intramammary infections (IMI) caused by Staphylococcus aureus remain an important problem for the dairy industry. The microbiome on the external skin of the teat apex may play a role in mitigating S. aureus IMI risk, in particular the production of antimicrobial peptides (AMPs) by commensal microbes. However, current studies of the teat apex microbiome utilize a 16S approach, which precludes the detection of genomic features such as genes that encode for AMPs. Therefore, further research using a shotgun metagenomic approach is needed to understand what role prepartum teat apex microbiome dynamics play in IMI risk.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Femenino , Bovinos , Animales , Staphylococcus aureus/genética , Metagenoma , Estudios de Casos y Controles , Mastitis Bovina/epidemiología , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Leche/microbiología , Glándulas Mamarias Animales/microbiología
12.
BMC Microbiol ; 24(1): 251, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977975

RESUMEN

OBJECTIVES: To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS: A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS: Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION: Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.


Asunto(s)
Bacterias , Biopelículas , Leche , Temperatura , Animales , Biopelículas/crecimiento & desarrollo , Leche/microbiología , Bovinos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Arabia Saudita , Microbiología de Alimentos , Fenómenos Fisiológicos Bacterianos
13.
BMC Microbiol ; 24(1): 263, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026151

RESUMEN

BACKGROUND: Coagulase-negative Staphylococcus species are an emerging cause of intramammary infection, posing a significant economic and public health threat. The aim of this study was to assess the occurrence of coagulase-negative Staphylococcus species in bovine milk and dairy farms in Northwestern Ethiopia and to provide information about their antibiotic susceptibility and virulence gene profiles. METHODS: The cross-sectional study was conducted from February to August 2022. Coagulase-negative Staphylococcus species were isolated from 290 milk samples. Species isolation and identification were performed by plate culturing and biochemical tests and the antimicrobial susceptibility pattern of each isolate was determined by the Kirby-Bauer disc diffusion test. The single-plex PCR was used to detect the presence of virulent genes. The STATA software version 16 was used for data analysis. The prevalence, proportion of antimicrobial resistance and the number of virulent genes detected from coagulase-negative Staphylococcus species were analyzed using descriptive statistics. RESULTS: Coagulase-negative Staphylococcus species were isolated in 28.6%, (95% CI: 23.5-34.2) of the samples. Of these, the S. epidermidis, S. sciuri, S. warneri, S. haemolyticus, S. simulans, S. chromogens, S. cohnii, and S. captis species were isolated at the rates of 11, 5.2, 3.4, 3.1, 3.1, 1, 1, and 0.7% respectively. All the isolates showed a high percentage (100%) of resistance to Amoxicillin, Ampicillin, and Cefotetan and 37.5% of resistance to Oxacillin. The majority (54.2%) of coagulase-negative isolates also showed multidrug resistance. Coagulase-negative Staphylococcus species carried the icaD, pvl, mecA, hlb, sec, and hla virulent genes at the rates of 26.5%, 22.1%, 21.7%, 9.6%, 9.6% and 8.4% respectively. CONCLUSION: The present study revealed that the majority of the isolates (54.2%) were found multidrug-resistant and carriage of one or more virulent and enterotoxin genes responsible for intramammary and food poisoning infections. Thus, urgent disease control and prevention measures are warranted to reduce the deleterious impact of coagulase-negative species. To the best of our knowledge, this is the first study in Ethiopia to detect coagulase-negative Staphylococcus species with their associated virulent and food poisoning genes from bovine milk.


Asunto(s)
Antibacterianos , Coagulasa , Pruebas de Sensibilidad Microbiana , Leche , Staphylococcus , Animales , Leche/microbiología , Bovinos , Staphylococcus/genética , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Staphylococcus/enzimología , Etiopía , Coagulasa/genética , Coagulasa/metabolismo , Estudios Transversales , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Virulencia/genética , Factores de Virulencia/genética , Femenino , Genes Bacterianos/genética , Mastitis Bovina/microbiología
14.
BMC Microbiol ; 24(1): 284, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085760

RESUMEN

BACKGROUND: The safety of milk production in terms of foodborne infections is a worldwide issue, particularly in developing countries where production is often unhygienic. A cross-sectional study was conducted from December 2018 to August 2019 in the Meta District of Eastern Hararghe Zone, Oromia Regional State, Ethiopia. We aim to assess milk hygiene practices among smallholder dairy farmers, estimate the prevalence of Staphylococcus aureus in raw cow milk and swabs, assess associated risk factors, and the antimicrobial susceptibility test of S. aureus isolates. Face-to-face interviews with 30 respondents randomly selected from smallholder dairy farmers were used to assess the potential risk factors for S. aureus contaminations in milk. A total of 177 samples were examined using standard microbiological testing. The disc diffusion technique was also employed to assess the antibiotic susceptibility of the isolates. The data was analyzed using STATA® version 14.0 statistical software. RESULTS: According to the milk hygiene assessment, 80% of respondents did not wash cow udder before milking, did not use detergent to clean milk containers, and did not keep milk refrigerated before consumption or sale, while 63.3% of milk consumers ingested raw milk. They had never heard of staphylococci foodborne disease. Likewise, the overall prevalence of S. aureus was 12.42% (95%CI: 8.32-18.98). The prevalence of S. aureus in udder milk, equipment swabs, and milkers' hands was 18.8%, 26.7%, and 30%, respectively. The prevalence of S. aureus in milk is significantly associated with age, and mastitis history (p < 0.05). Moreover, old and mastitis positive animals were eight (OR: 8.40; 95%CI: 1.68-41.89) and four (OR: 4.33; 95%CI: 1.37-13.66) times more likely to be infected by S. aureus than adult, and mastitis negative animal. The isolates were resistant to penicillin G (97.4%) and tetracycline (69.2%) whereas susceptible to kanamycin, streptomycin, vancomycin, and cefotaxime, at 84.6%, 71.8%, 64%, and 58.8%, respectively. CONCLUSION: This study revealed the presence of antimicrobial-resistant patterns of S. aureus on commonly used antibiotics, as well as inadequate milk handling practices in the study area. Thus, awareness should be created on proper milk handling and hygiene as well as appropriate uses of antibiotics should be encouraged.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Leche , Animales , Leche/microbiología , Etiopía/epidemiología , Bovinos , Estudios Transversales , Femenino , Antibacterianos/farmacología , Humanos , Adulto , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Industria Lechera , Granjas , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Prevalencia , Higiene , Factores de Riesgo , Masculino , Adulto Joven , Persona de Mediana Edad
15.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710998

RESUMEN

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Enteritis , Variación Genética , Mastitis Bovina , Leche , Filogenia , Animales , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/clasificación , Clostridium perfringens/patogenicidad , Bovinos , Egipto , Femenino , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Leche/microbiología , Enteritis/microbiología , Enteritis/veterinaria , Mastitis Bovina/microbiología , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Fosfolipasas de Tipo C/genética , Industria Lechera , Granjas , Toxinas Bacterianas/genética
16.
BMC Microbiol ; 24(1): 310, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174931

RESUMEN

BACKGROUND: Bovine mastitis results in significant economic losses for the dairy industry globally due to milk production losses and decreased herd efficiency. This research aimed to isolate, select, and characterize indigenous lactobacilli with probiotic properties. A total of 40 lactobacilli were isolated from healthy milk samples of cattle and identified at the species level through 16S rDNA sequencing. All isolates were initially screened for antimicrobial activity, and selected isolates underwent in vitro assessment of probiotic properties. RESULTS: Among the lactobacilli isolates, varying levels of activity (9 to 19 mm) against cattle mastitogens; Stapylococcus aureus (Staph. aureus), Escherichia coli (E. coli) and Streptococcus dysgalactiae (Strep. dysgalactiae) were observed in the well diffusion assay. These isolates demonstrated auto-aggregation (ranging from 14.29 ± 0.96% to 62.11 ± 1.09%) and co-aggregate (ranging from 9.21 ± 0.14% to 55.74 ± 0.74%) with mastitogens after 2 h. Lactobacillus (Lb.) plantarum CM49 showed sensitivity to most antibiotics tested and exhibited strong inhibitory effects, with mean log10 reductions of 3.46 for Staph. aureus, 2.82 for E. coli, and 1.45 for Strep. dysgalactiae in co-culture experiments. Furthermore, Lb. plantarum CM49 significantly decreased the adhesion rate of mastitogens on the bovine mammary cell line and mouse model, demonstrating its potential effectiveness in preventing mastitis. CONCLUSION: It is concluded that Lb. plantarum CM49 has remarkable probiotic potential with activity against cattle mastitogens in the laboratory and cell culture and competitively excludes mastitogens from bovine mammary cells and ameliorates Staph. aureus-induced mastitis in mice.


Asunto(s)
Escherichia coli , Lactobacillus plantarum , Mastitis Bovina , Leche , Probióticos , Staphylococcus aureus , Animales , Bovinos , Probióticos/farmacología , Mastitis Bovina/microbiología , Mastitis Bovina/prevención & control , Lactobacillus plantarum/fisiología , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/genética , Femenino , Leche/microbiología , Staphylococcus aureus/efectos de los fármacos , Ratones , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Streptococcus/efectos de los fármacos , Streptococcus/genética , Streptococcus/fisiología , Pruebas de Sensibilidad Microbiana
17.
Microb Pathog ; 187: 106533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171428

RESUMEN

Mastitis significantly affects the udder tissue in dairy cattle, leading to inflammation, discomfort, and a decline in both milk yield and quality. The condition can be attributed to an array of microbial agents that access the mammary gland through multiple pathways. The ramifications of this ailment are not merely confined to animal welfare but extend to the financial viability of the livestock industry. This review offers a historical lens on mastitis, tracing its documentation back to 1851, and examines its global distribution with a focus on regional differences in prevalence and antimicrobial resistance (AMR) patterns. Specific microbial genes and communities implicated in both mastitis and AMR are explored, including Staphylococcus aureus, Streptococcus agalactiae,Streptococcus dysagalactiae, Streptococcus uberis Escherichia coli, Klebsiella pneumoniae, Mycoplasma bovis, Corynebacterium bovis, among others. These microorganisms have evolved diverse strategies to elude host immune responses and neutralize commonly administered antibiotics, complicating management efforts. The review aims a comprehensive overview of the current knowledge and research gaps on mastitis and AMR, and to highlight the need for a One Health approach to address this global health issue. Such an approach entails multi-disciplinary cooperation to foster judicious antibiotic use, enhance preventive measures against mastitis, and bolster surveillance and monitoring of AMR in pathogens responsible for mastitis.


Asunto(s)
Mastitis Bovina , Microbiota , Animales , Femenino , Bovinos , Humanos , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Streptococcus agalactiae , Leche/microbiología , Escherichia coli , Mastitis Bovina/epidemiología , Mastitis Bovina/prevención & control , Mastitis Bovina/metabolismo
18.
Microb Pathog ; 195: 106902, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218374

RESUMEN

Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35 %), six E. coli (75 %) and seven Klebsiella (100 %) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.


Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Klebsiella , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Leche , Staphylococcus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bovinos , Animales , Mastitis Bovina/microbiología , Femenino , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Klebsiella/genética , Klebsiella/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Leche/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Genes Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
19.
Trop Med Int Health ; 29(6): 526-535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715472

RESUMEN

OBJECTIVE: This study aimed to investigate the status of antimicrobial-resistant strains of Staphylococcus aureus in Pakistan, their association in terms of co-occurrence with the biofilm-forming genes, resistance profiling and associated discrepancies in diagnostic methods. METHODOLOGY: A total of 384 milk samples from bovine was collected by using convenient sampling technique and were initially screened for subclinical mastitis, further preceded by isolation and confirmation of S. aureus. The S. aureus isolates were subjected to evaluation of antimicrobial resistance by phenotypic identification using Kirby-Bauer disc diffusion method, while the genotypic estimation was done by polymerase chain reaction to declare isolates as methicillin, beta-lactam, vancomycin, tetracycline, and aminoglycoside resistant S. aureus (MRSA, BRSA, VRSA, TRSA, and ARSA), respectively. RESULTS: The current study revealed an overall prevalence of subclinical mastitis and S. aureus to be 59.11% and 46.69%, respectively. On a phenotypic basis, the prevalence of MRSA, BRSA, VRSA, TRSA, and ARSA was found to be 44.33%, 58.49%, 20.75%, 35.84%, and 30.18%, respectively. The results of PCR analysis showed that 46.80% of the tested isolates were declared as MRSA, 37.09% as BRSA, and 36.36% as VRSA, while the occurrence of TRSA and ARSA was observed in 26.31% and 18.75%, respectively. The current study also reported the existence of biofilm-producing genes (icaA and icaD) in 49.06% and 40.57% isolates, respectively. Lastly, this study also reported a high incidence of discrepancies for both genotypic and phenotypic identification methods of resistance evaluation, with the highest discrepancy ratio for the accA-aphD gene, followed by tetK, vanB, blaZ, and mecA genes. CONCLUSION: The study concluded that different antibiotic resistance strains of S. aureus are prevalent in study districts with high potential to transmit between human populations. The study also determined that there are multiple resistance determinants and mechanisms that are responsible for the silencing and expression of antibiotic resistance genes.


Asunto(s)
Antibacterianos , Mastitis Bovina , Leche , Infecciones Estafilocócicas , Staphylococcus aureus , Bovinos , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de los fármacos , Animales , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Femenino , Mastitis Bovina/microbiología , Leche/microbiología , Biopelículas , Pakistán/epidemiología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/genética , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética , Genotipo
20.
Arch Microbiol ; 206(6): 283, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806864

RESUMEN

The objective of this study was to investigate the effectiveness of a phage cocktail against Pseudomonas fluorescens group and its effect on the microbial, physical and chemical properties of raw milk during different storage conditions. A phage cocktail consisting of Pseudomonas fluorescens, Pseudomonas tolaasii, and Pseudomonas libanensis phages was prepared. As a result, reductions in fluorescent Pseudomonas counts of up to 3.44 log units for the storage at 4 °C and 2.38 log units for the storage at 25 °C were achieved. Following the phage application, it is found that there was no significant difference in the total mesophilic aerobic bacteria and Enterobacteriaceae counts. However, it was observed that the number of lactic acid bacteria was higher in phage-treated groups. The results also showed that pH values in the phage added groups were lower than the others and the highest titratable acidity was obtained only in the bacteria-inoculated group. As a future perspective, this study suggests that, while keeping the number of target microorganisms under control in the milk with the use of phages during storage, the microbiota and accordingly the quality parameters of the milk can be affected. This work contributes to the development of effective strategies for maintaining the quality and extending the shelf life of milk and dairy products.


Asunto(s)
Leche , Fagos Pseudomonas , Pseudomonas fluorescens , Leche/microbiología , Pseudomonas fluorescens/virología , Animales , Fagos Pseudomonas/fisiología , Fagos Pseudomonas/aislamiento & purificación , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA