Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.297
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 165(6): 1507-1518, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27180907

RESUMEN

Tools capable of imaging and perturbing mechanical signaling pathways with fine spatiotemporal resolution have been elusive, despite their importance in diverse cellular processes. The challenge in developing a mechanogenetic toolkit (i.e., selective and quantitative activation of genetically encoded mechanoreceptors) stems from the fact that many mechanically activated processes are localized in space and time yet additionally require mechanical loading to become activated. To address this challenge, we synthesized magnetoplasmonic nanoparticles that can image, localize, and mechanically load targeted proteins with high spatiotemporal resolution. We demonstrate their utility by investigating the cell-surface activation of two mechanoreceptors: Notch and E-cadherin. By measuring cellular responses to a spectrum of spatial, chemical, temporal, and mechanical inputs at the single-molecule and single-cell levels, we reveal how spatial segregation and mechanical force cooperate to direct receptor activation dynamics. This generalizable technique can be used to control and understand diverse mechanosensitive processes in cell signaling. VIDEO ABSTRACT.


Asunto(s)
Técnicas Genéticas , Mecanotransducción Celular , Nanopartículas del Metal , Receptores Notch/metabolismo , Actinas/metabolismo , Cadherinas/metabolismo , Línea Celular , Células Cultivadas , Humanos , Mecanorreceptores/fisiología , Nanopartículas del Metal/química , Microesferas , Técnicas de Sonda Molecular , Proteínas Recombinantes de Fusión/metabolismo , Análisis Espacial , Tiempo
2.
Nature ; 626(7999): 542-548, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109940

RESUMEN

The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.


Asunto(s)
Diseño de Fármacos , Ligandos , Nanopartículas del Metal , Puntos Cuánticos , Acetona/química , Alcoholes/química , Aniones , Compuestos de Calcio/química , Cationes , Coloides/química , Plomo , Mediciones Luminiscentes , Espectroscopía de Resonancia Magnética , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Óxidos/química , Fosfolípidos/química , Puntos Cuánticos/química , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química
3.
Nature ; 628(8009): 771-775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632399

RESUMEN

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.


Asunto(s)
Coloides , Imagen Individual de Molécula , Espectrometría Raman , Coloides/química , Hidroxilamina/química , Nanopartículas del Metal/química , Distribución de Poisson , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Plata/química , Imagen Individual de Molécula/métodos , Imagen Individual de Molécula/normas , Espectrometría Raman/métodos , Espectrometría Raman/normas , Vibración
4.
Nature ; 623(7988): 745-751, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37788684

RESUMEN

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Asunto(s)
Productos Biológicos , Técnicas de Química Sintética , Descarboxilación , Electroquímica , Electrodos , Preparaciones Farmacéuticas , Ácidos Carboxílicos/química , Nanopartículas del Metal/química , Oxidación-Reducción , Plata/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Níquel/química , Ligandos , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Electroquímica/métodos , Técnicas de Química Sintética/métodos
5.
Nature ; 623(7985): 58-65, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914945

RESUMEN

To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Prótesis e Implantes , Heridas y Lesiones , Animales , Ratas , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Conductividad Eléctrica , Oro/química , Hidrogeles/administración & dosificación , Hidrogeles/química , Hidrogeles/uso terapéutico , Nanopartículas del Metal/química , Músculos/lesiones , Músculos/inervación , Robótica , Heridas y Lesiones/rehabilitación , Heridas y Lesiones/cirugía
6.
Nature ; 612(7939): 259-265, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36443603

RESUMEN

The unique topology and physics of chiral superlattices make their self-assembly from nanoparticles highly sought after yet challenging in regard to (meta)materials1-3. Here we show that tetrahedral gold nanoparticles can transform from a perovskite-like, low-density phase with corner-to-corner connections into pinwheel assemblies with corner-to-edge connections and denser packing. Whereas corner-sharing assemblies are achiral, pinwheel superlattices become strongly mirror asymmetric on solid substrates as demonstrated by chirality measures. Liquid-phase transmission electron microscopy and computational models show that van der Waals and electrostatic interactions between nanoparticles control thermodynamic equilibrium. Variable corner-to-edge connections among tetrahedra enable fine-tuning of chirality. The domains of the bilayer superlattices show strong chiroptical activity as identified by photon-induced near-field electron microscopy and finite-difference time-domain simulations. The simplicity and versatility of substrate-supported chiral superlattices facilitate the manufacture of metastructured coatings with unusual optical, mechanical and electronic characteristics.


Asunto(s)
Oro , Nanopartículas del Metal , Electrónica , Física
7.
Nature ; 603(7900): 271-275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038718

RESUMEN

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Asunto(s)
Oro , Nanopartículas del Metal , Alcoholes , Aleaciones , Carbono , Catálisis , Oxidación-Reducción , Oxígeno , Paladio
8.
Nature ; 601(7893): 366-373, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046606

RESUMEN

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.


Asunto(s)
Proteínas de Unión al Calcio , Células Dendríticas , Inflamasomas , Nanopartículas del Metal , Receptores Acoplados a Proteínas G , Animales , Proteínas de Unión al Calcio/metabolismo , Células Dendríticas/inmunología , Oro , Subtipo H9N2 del Virus de la Influenza A , Mecanotransducción Celular , Nanopartículas del Metal/química , Ratones , Canales de Potasio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
9.
Nature ; 594(7863): 380-384, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135522

RESUMEN

DNA has long been used as a template for the construction of helical assemblies of inorganic nanoparticles1-5. For example, gold nanoparticles decorated with DNA (or with peptides) can create helical assemblies6-9. But without such biological ligands, helices are difficult to achieve and their mechanism of formation is challenging to understand10,11. Atomically precise nanoclusters that are protected by ligands such as thiolate12,13 have demonstrated hierarchical structural complexity in their assembly at the interparticle and intraparticle levels, similar to biomolecules and their assemblies14. Furthermore, carrier dynamics can be controlled by engineering the structure of the nanoclusters15. But these nanoclusters usually have isotropic structures16,17 and often assemble into commonly found supercrystals18. Here we report the synthesis of homodimeric and heterodimeric gold nanoclusters and their self-assembly into superstructures. While the homodimeric nanoclusters form layer-by-layer superstructures, the heterodimeric nanoclusters self-assemble into double- and quadruple-helical superstructures. These complex arrangements are the result of two different motif pairs, one pair per monomer, where each motif bonds with its paired motif on a neighbouring heterodimer. This motif pairing is reminiscent of the paired interactions of nucleobases in DNA helices. Meanwhile, the surrounding ligands on the clusters show doubly or triply paired steric interactions. The helical assembly is driven by van der Waals interactions through particle rotation and conformational matching. Furthermore, the heterodimeric clusters have a carrier lifetime that is roughly 65 times longer than that of the homodimeric clusters. Our findings suggest new approaches for increasing complexity in the structural design and engineering of precision in supercrystals.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Cristalización , ADN/química , Ligandos , Modelos Moleculares
10.
Proc Natl Acad Sci U S A ; 121(23): e2403131121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805267

RESUMEN

The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Animales , Ratones , Túbulos Renales Proximales/metabolismo , Eliminación Renal , Riñón/metabolismo , Masculino
11.
Nat Rev Genet ; 21(1): 5-26, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31636414

RESUMEN

In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.


Asunto(s)
Membrana Celular/química , ADN/química , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/química , Nanomedicina , Nanoestructuras/química , Animales , Biomimética , Humanos
12.
Nature ; 587(7835): 588-593, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239800

RESUMEN

The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.


Asunto(s)
Técnicas Biosensibles/métodos , Diagnóstico Precoz , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH-1/genética , Nanodiamantes/química , ARN Viral/sangre , Avidina/química , Técnicas Biosensibles/instrumentación , Biotina/química , Fluorescencia , Oro/química , VIH-1/aislamiento & purificación , Humanos , Límite de Detección , Nanopartículas del Metal/química , Microfluídica/instrumentación , Microfluídica/métodos , Microondas , Técnicas de Amplificación de Ácido Nucleico , Papel , Plasma/virología , Teoría Cuántica , Sensibilidad y Especificidad , Imagen Individual de Molécula , Temperatura
13.
Proc Natl Acad Sci U S A ; 120(28): e2302142120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399399

RESUMEN

Harnessing the programmable nature of DNA origami for controlling structural features in crystalline materials affords opportunities to bring crystal engineering to a remarkable level. However, the challenge of crystallizing a single type of DNA origami unit into varied structural outcomes remains, given the requirement for specific DNA designs for each targeted structure. Here, we show that crystals with distinct equilibrium phases and shapes can be realized using a single DNA origami morphology with an allosteric factor to modulate the binding coordination. As a result, origami crystals undergo phase transitions from a simple cubic lattice to a simple hexagonal (SH) lattice and eventually to a face-centered cubic (FCC) lattice. After selectively removing internal nanoparticles from DNA origami building blocks, the body-centered tetragonal and chalcopyrite lattice are derived from the SH and FCC lattices, respectively, revealing another phase transition involving crystal system conversions. The rich phase space was realized through the de novo synthesis of crystals under varying solution environments, followed by the individual characterizations of the resulting products. Such phase transitions can lead to associated transitions in the shape of the resulting products. Hexagonal prism crystals, crystals characterized by triangular facets, and twinned crystals are observed to form from SH and FCC systems, which have not previously been experimentally realized by DNA origami crystallization. These findings open a promising pathway toward accessing a rich phase space with a single type of building block and wielding other instructions as tools to develop crystalline materials with tunable properties.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanopartículas del Metal/química , Magnesio , ADN/química , Cristalización , Transición de Fase , Nanotecnología , Conformación de Ácido Nucleico , Nanoestructuras/química
14.
Proc Natl Acad Sci U S A ; 120(42): e2305662120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812696

RESUMEN

Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.


Asunto(s)
Nanopartículas del Metal , Insuficiencia Renal Crónica , Ratones , Animales , Oro/farmacología , Ácido Fólico/metabolismo , Nanopartículas del Metal/uso terapéutico , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis
15.
Annu Rev Biomed Eng ; 26(1): 475-501, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594921

RESUMEN

Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.


Asunto(s)
ADN , ADN/química , Humanos , Proteínas/química , Optogenética/métodos , Animales , Nanopartículas/química , Nanotecnología/métodos , Lípidos/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie , Calor
16.
Methods ; 221: 12-17, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006950

RESUMEN

This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 µM, with a limit of detection of 0.084 µM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.


Asunto(s)
Nanopartículas del Metal , Teléfono Inteligente , Humanos , Creatinina , Oro , Urinálisis , Colorimetría/métodos
17.
Cell ; 142(6): 879-88, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20850010

RESUMEN

Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were attributed to an extended and relatively rigid lever arm; their variability to two stepsizes, one large (72 nm) and one small (44 nm). These results suggest that there exist two tilt angles during myosin-VI stepping, which correspond to the pre- and postpowerstroke states and regulate the leading head. The large steps are consistent with the previously reported hand-over-hand mechanism, while the small steps follow an inchworm-like mechanism and increase in frequency with ADP. Switching between these two mechanisms in a strain-sensitive, ADP-dependent manner allows myosin VI to fulfill its multiple cellular tasks including vesicle transport and membrane anchoring.


Asunto(s)
Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animales , Pollos , Dimerización , Oro , Humanos , Nanopartículas del Metal , Microscopía , Microscopía Fluorescente , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Puntos Cuánticos
18.
Exp Cell Res ; 435(1): 113904, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163564

RESUMEN

Lung cancer is the leading cause of mortality worldwide of which non-small cell lung carcinoma constitutes majority of the cases. High mortality is attributed to early metastasis, late diagnosis, ineffective treatment and tumor relapse. Chemotherapy and radiotherapy form the mainstay of its treatment. However, their associated side effects involving kidneys, nervous system, gastrointestinal tract, and liver further adds to dismal outcome. These disadvantages of conventional treatment can be circumvented by use of engineered nanoparticles for improved effectiveness with minimal side effects. In this study we have synthesized silver gold nanocomposite (Ag-Au NC) using polyethylene glycol and l-ascorbic acid as surfactant and reducing agent respectively. Synthesized nanocomposite was characterized by ultraviolet-visible absorption, dynamic light scattering, scanning and transmission electron microscopy. Compositional analysis was carried out by energy dispersive X-ray analysis and average pore diameter was estimated using Barrett-Joyner-Halenda method. In-silico molecular docking analysis of the synthesized NC against active regions of epidermal growth factor receptor revealed good binding energy. Subsequently, we investigated the effect of NC on growth and stem cell attributes of A549 lung cancer cells. Results showed that NC was effective in inhibiting A549 cell proliferation, induced DNA damage, G2/M phase arrest and apoptosis. Further, tumor cell migration and spheroid formation were also negatively affected. NC also enhanced reactive oxygen species generation and mitochondrial depolarization. In addition, the effect of NC on putative cancer stem cells in A549 cells was evaluated. We found that Ag-Au NC at IC50 targeted CD44, CD24, CD166, CD133 and CD326 positive cancer stem cells and induced apoptosis. CD166 positive cells were relatively resistance to apoptosis. Together our results demonstrate the anticancer efficacy of Ag-Au NC mediated by a mechanism involving cell cycle arrest and mitochondrial derangement.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Nanocompuestos , Humanos , Neoplasias Pulmonares/patología , Ácido Ascórbico/farmacología , Simulación del Acoplamiento Molecular , Apoptosis , Pulmón/metabolismo , Nanocompuestos/química , Células Madre Neoplásicas/metabolismo , Nanopartículas del Metal/química , Línea Celular Tumoral
19.
Proc Natl Acad Sci U S A ; 119(36): e2205983119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037341

RESUMEN

Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNß therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNß that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.


Asunto(s)
Hidróxido de Aluminio , Inmunoterapia , Interferón Tipo I , Compuestos de Alumbre/química , Hidróxido de Aluminio/química , Animales , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Inmunoterapia/normas , Interferón Tipo I/química , Interferón Tipo I/uso terapéutico , Interferón-alfa , Interferón beta , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones
20.
Proc Natl Acad Sci U S A ; 119(42): e2210204119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215468

RESUMEN

V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.


Asunto(s)
Nanopartículas del Metal , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato/metabolismo , Detergentes , Oro/metabolismo , Modelos Moleculares , ATPasas de Translocación de Protón/metabolismo , Rotación , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA