Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain Behav Immun ; 111: 61-75, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001827

RESUMO

Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.


Assuntos
Transtorno do Espectro Autista , Masculino , Feminino , Animais , Camundongos , Transtorno do Espectro Autista/genética , Microglia , Camundongos Knockout , Proteômica , Neurônios/fisiologia
2.
Cancer Immunol Immunother ; 67(11): 1797-1807, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203262

RESUMO

Oncogenic MYD88 mutations, most notably the Leu 265 Pro (L265P) mutation, were recently identified as potential driver mutations in various B-cell non-Hodgkin Lymphomas (NHLs). The L265P mutation is now thought to be common to virtually all NHLs and occurs in between 4 and 90% of cases, depending on the entity. Since it is tumor-specific, the mutation, and the pathways it regulates, might serve as advantageous therapeutic targets for both conventional chemotherapeutic intervention, as well as immunotherapeutic strategies. Here, we review recent progress on elucidating the molecular and cellular processes affected by the L265P mutation of MYD88, describe a new in vivo model for MyD88 L265P-mediated oncogenesis, and summarize how these findings could be exploited therapeutically by specific targeting of signaling pathways. In addition, we summarize current and explore future possibilities for conceivable immunotherapeutic approaches, such as L265P-derived peptide vaccination, adoptive transfer of L265P-restricted T cells, and use of T-cell receptor-engineered T cells. With clinical trials regarding their efficacy rapidly expanding to NHLs, we also discuss potential combinations of immune checkpoint inhibitors with the described targeted chemotherapies of L265P signaling networks, and/or with the above immunological approaches as potential ways of targeting MYD88-mutated lymphomas in the future.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma/tratamento farmacológico , Linfoma/genética , Terapia de Alvo Molecular , Mutação , Fator 88 de Diferenciação Mieloide/genética , Humanos
3.
Case Rep Surg ; 2021: 6610533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763280

RESUMO

Lipomas arising from the omentum are extremely rare in adults. Omental lipomas are typically asymptomatic, but very large ones may cause nonspecific abdominal symptoms and discomfort. Rarely they can cause omental torsion and present with an acute abdomen. We report a 41-year-old female patient with a giant lipoma (40 × 26 × 8 cm and 11,520 g) who presented with mild abdominal discomfort. Workup included abdominal ultrasound (USG) and magnetic resonance imaging (MRI). Surgical resection was performed without complication. No recurrence was observed during 4-year follow-up.

4.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330762

RESUMO

BACKGROUND: Adoptive transfer of engineered T cells has shown remarkable success in B-cell malignancies. However, the most common strategy of targeting lineage-specific antigens can lead to undesirable side effects. Also, a substantial fraction of patients have refractory disease. Novel treatment approaches with more precise targeting may be an appealing alternative. Oncogenic somatic mutations represent ideal targets because of tumor specificity. Mutation-derived neoantigens can be recognized by T-cell receptors (TCRs) in the context of MHC-peptide presentation. METHODS: Here we have generated T-cell lines from healthy donors by autologous in vitro priming, targeting a missense mutation on the adaptor protein MyD88, changing leucine at position 265 to proline (MyD88 L265P), which is one of the most common driver mutations found in B-cell lymphomas. RESULTS: Generated T-cell lines were selectively reactive against the mutant HLA-B*07:02-restricted epitope but not against the corresponding wild-type peptide. Cloned TCRs from these cell lines led to mutation-specific and HLA-restricted reactivity with varying functional avidity. T cells engineered with a mutation-specific TCR (TCR-T cells) recognized and killed B-cell lymphoma cell lines characterized by intrinsic MyD88 L265P mutation. Furthermore, TCR-T cells showed promising therapeutic efficacy in xenograft mouse models. In addition, initial safety screening did not indicate any sign of off-target reactivity. CONCLUSION: Taken together, our data suggest that mutation-specific TCRs can be used to target the MyD88 L265P mutation, and hold promise for precision therapy in a significant subgroup of B-cell malignancies, possibly achieving the goal of absolute tumor specificity, a long sought-after dream of immunotherapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfoma de Células B/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Humanos , Linfoma de Células B/imunologia , Mutação
5.
PLoS One ; 10(6): e0129786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076008

RESUMO

Reactive oxygen species (ROS) produced by the inducible NADPH oxidase type 2 (NOX2) complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC)- and regulatory T cell (T(reg)) mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA)) induced sarcoma model. Superoxide production by NOX2 requires the p47(phox) (NCF1) subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/*) have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+) retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg) and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell infiltration in the chemically induced MCA sarcoma model.


Assuntos
Transformação Celular Neoplásica , Glicoproteínas de Membrana/metabolismo , Metilcolantreno/efeitos adversos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sarcoma/etiologia , Sarcoma/metabolismo , Animais , Relação CD4-CD8 , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Memória Imunológica , Imunomodulação , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Knockout , Mutação , NADPH Oxidase 2 , NADPH Oxidases/genética , Oxirredução , Sarcoma/patologia , Sarcoma/terapia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA