Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(1): 35-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068871

RESUMO

In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.


Assuntos
Proteínas de Bactérias , Biotecnologia , Proteínas de Bactérias/metabolismo , Células Procarióticas/metabolismo , Subunidades Proteicas , Sistemas de Liberação de Medicamentos
2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232435

RESUMO

The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments. The main reason is that the magneto-mechanical effect is extremely sensitive to changes in any parameter of magnetic nanoparticles and the environment and changes in the parameters of the applied magnetic field. Thus, in this review, we (1) summarize and propose a simplified theoretical explanation of the main factors affecting the efficiency of the magneto-mechanical approach; (2) discuss the nature of the MNP-mediated mechanical forces and their order of magnitude; (3) show some of the main applications of the magneto-mechanical approach in the control over the properties of biological systems.


Assuntos
Campos Magnéticos , Nanopartículas , Magnetismo
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555233

RESUMO

Introducing a new genetically encoded material containing a photoactivatable label as a model cargo protein, based on Myxococcus xanthus (Mx) encapsulin system stably expressed in human 293T cells. Encapsulin from Mx is known to be a protein-based container for a ferritin-like cargo in its shell which could be replaced with an exogenous cargo protein, resulting in a modified encapsulin system. We replaced Mx natural cargo with a foreign photoactivatable mCherry (PAmCherry) fluorescent protein and isolated encapsulins, containing PAmCherry, from 293T cells. Isolated Mx encapsulin shells containing photoactivatable label can be internalized by macrophages, wherein the PAmCherry fluorescent signal remains clearly visible. We believe that a genetically encoded nanocarrier system obtained in this study, can be used as a platform for controllable delivery of protein/peptide therapeutics in vitro.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613511

RESUMO

Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radiotherapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is crucial both for diagnostics and for nanoparticle application as radiosensitizers. The Fe3O4 core was introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging. The aim of this study was to assess the in vivo bimodal CT and MRI enhancement ability of novel core/shell Fe3O4@Au theranostic nanoparticles. Core/shell Fe3O4@Au nanoparticles were synthesized and coated with PEG and glucose. C57Bl/6 mice bearing Ca755 mammary adenocarcinoma tumors received intravenous injections of the nanoparticles. CT and MRI were performed at several timepoints between 5 and 102 min, and on day 17 post-injection. Core/shell Fe3O4@Au nanoparticles provided significant enhancement of the tumor and tumor blood vessels. Nanoparticles also accumulated in the liver and spleen and were retained in these organs for 17 days. Mice did not show any signs of toxicity over the study duration. These results indicate that theranostic bimodal Fe3O4@Au nanoparticles are non-toxic and serve as effective contrast agents both for CT and MRI diagnostics. These nanoparticles have potential for future biomedical applications in cancer diagnostics and beyond.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Animais , Camundongos , Ouro , Medicina de Precisão , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Nanomedicina Teranóstica/métodos
5.
Bioorg Chem ; 115: 105267, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426158

RESUMO

A new anticancer benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives were synthesized and characterized. Anticancer evaluation in vitro against four cancer cell lines including adenocarcinomic human alveolar basal epithelial cells (A549), hepatocellular carcinoma (HepG2), prostate cancer (PC3) and breast cancer (MCF7) indicated that some of prepared compounds shows higher selectivity in comparison with doxorubicin. DNA interaction studies by optical, CD, NMR spectroscopies showed the high affinity of benzothiazole ligands towards the dsDNA. The ligand-DNA interaction occurs through the intercalation of benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives with nucleic acid. The investigation of formed ligand - DNA complexes by docking and molecular dynamic calculations was applied for analysis of the relationship between structure and anticancer activity. The results suggested that benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives might serve as a novel scaffold for the future development to new antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , DNA/química , Compostos de Quinolínio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Relação Estrutura-Atividade
6.
Nanomedicine ; 32: 102317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33096245

RESUMO

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Proteínas de Membrana/farmacologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/química , Esferoides Celulares/efeitos dos fármacos
7.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830156

RESUMO

Over the past decade, cell therapy has found many applications in the treatment of different diseases. Some of the cells already used in clinical practice include stem cells and CAR-T cells. Compared with traditional drugs, living cells are much more complicated systems that must be strictly controlled to avoid undesirable migration, differentiation, or proliferation. One of the approaches used to prevent such side effects involves monitoring cell distribution in the human body by any noninvasive technique, such as magnetic resonance imaging (MRI). Long-term tracking of stem cells with artificial magnetic labels, such as magnetic nanoparticles, is quite problematic because such labels can affect the metabolic process and cell viability. Additionally, the concentration of exogenous labels will decrease during cell division, leading to a corresponding decrease in signal intensity. In the current work, we present a new type of genetically encoded label based on encapsulin from Myxococcus xanthus bacteria, stably expressed in human mesenchymal stem cells (MSCs) and coexpressed with ferroxidase as a cargo protein for nanoparticles' synthesis inside encapsulin shells. mZip14 protein was expressed for the enhancement of iron transport into the cell. Together, these three proteins led to the synthesis of iron-containing nanoparticles in mesenchymal stem cells-without affecting cell viability-and increased contrast properties of MSCs in MRI.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
8.
Anal Chem ; 92(12): 8010-8014, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32441506

RESUMO

In vivo monitoring of reactive oxygen species (ROS) in tumors during treatment with anticancer therapy is important for understanding the mechanism of action and in the design of new anticancer drugs. In this work, a platinized nanoelectrode is placed into a single cell for detection of the ROS signal, and drug-induced ROS production is then recorded. The main advantages of this method are the short incubation time with the drug and its high sensitivity which allows the detection of low intracellular ROS concentrations. We have shown that our new method can measure the ROS response to chemotherapy in tumor-bearing mice in real-time. ROS levels were measured in vivo inside the tumor at different depths in response to doxorubicin. This work provides an effective new approach for the measurement of intracellular ROS by platinized nanoelectrodes.


Assuntos
Antineoplásicos/farmacologia , Técnicas Biossensoriais , Doxorrubicina/farmacologia , Técnicas Eletroquímicas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
9.
Nanomedicine ; 25: 102171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084594

RESUMO

Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.


Assuntos
Neoplasias da Mama/terapia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/terapia , Magnetoterapia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Cobalto/farmacologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Metástase Neoplásica , Temperatura
10.
Langmuir ; 34(15): 4640-4650, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29566327

RESUMO

Herein, we report a novel one-step solvothermal synthesis of magnetite nanoclusters (MNCs). In this report, we discuss the synthesis, structure, and properties of MNCs and contrast enhancement in T2-weighted MR images using magnetite nanoclusters. The effect of different organic acids, used as surfactants, on the size and shape of MNCs was investigated. The structure and properties of samples were determined by magnetic measurements, TGA, TEM, HRTEM, XRD, FTIR, and MRI. Magnetic measurements show that obtained MNCs have relatively high saturation magnetization values (65.1-81.5 emu/g) and dependence of the coercive force on the average size of MNCs was established. MNCs were transferred into an aqueous medium by Pluronic F-127, and T2-relaxivity values were determined. T2-Weighted MR phantom images clearly demonstrated that such magnetite nanoclusters can be used as contrast agents for MRI.

11.
J Biochem Mol Toxicol ; 32(12): e22225, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30290022

RESUMO

Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin-coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles' coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.


Assuntos
Materiais Revestidos Biocompatíveis/toxicidade , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Ensaio Cometa , Compostos Férricos/química , Fibroblastos/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/química
12.
Med Sci Monit ; 24: 177-182, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29311540

RESUMO

BACKGROUND Post-traumatic syringomyelia (PTS) is a common disease after spinal cord injury (SCI). The present study was performed to evaluate the advantages of diffusion tensor imaging (DTI) in estimating SCI and prognosing PTS in SCI rats. MATERIAL AND METHODS Forty rats were divided into 3 groups based on the extent of the individual SCI and PTS: a control group (n=10), a PTS group (n=8), and an SCI group (n=22). BBB tests were performed preoperatively and postoperatively at (1 d, 3 d, 5 d, 1 w, 2 w, 1 w, 2 w, 3 w, 4 w, 5 w, and 6 w). MRI T2 scanning was conducted postoperatively at (1 w, 2 w, 3 w, 4 w, 5 w, 6 w). DTI and diffusion tensor tractography were used for analyzing neuro-fiber changes after SCI. RESULTS BBB scoring showed no differences between the PTS group and SCI group (P<0.05). PTS was found in 8 rats after SCI. MRI showed PTS formation in 3 rats at 2 w after SCI, and 5 rats showed PTS formation at postoperative 3w after SCI. Compared with the control group, ADC showed significant increase in both the PTS group (P<0.05) and the SCI group (P<0.05), FA showed significant decreases in the PTS (P<0.05) and SCI (P<0.05) groups. Compared with the SCI group, the PTS group showed an increase in ADC, but no statistical difference was found in ADC (P>0.05). The PTS group showed a significant increase in FA (P<0.05). CONCLUSIONS The combination of diffusion tensor imaging and diffusion tensor tractography has characteristics of high-sensitivity and quantitation for PTS prognosis. FA is predictive in the prognosis of PTS formation after SCI.


Assuntos
Imagem de Tensor de Difusão , Traumatismos da Medula Espinal/complicações , Siringomielia/diagnóstico , Siringomielia/etiologia , Ferimentos e Lesões/complicações , Animais , Anisotropia , Feminino , Cuidados Pós-Operatórios , Ratos , Siringomielia/cirurgia
13.
Nanomedicine ; 14(5): 1733-1742, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29730399

RESUMO

In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Feminino , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Imagem Multimodal , Ratos , Ratos Wistar
14.
Med Sci Monit ; 21: 3179-85, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486048

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI) often results in the deficiency of glia and neurons in cystic cavities. These syringomyelic cysts can prevent axonal regeneration and sprouting. Details of the mechanism of syringomyelic cyst formation are unknown and an effective treatment for overcoming syringomyelic cysts is not available. MATERIAL AND METHODS: Ten adult female Wistar rats underwent contusion SCI modeling resulting in syringomyelic cyst formation. A novel method for locating the cysts was developed and employed. MRI safe silver needles were inserted through the erector spinae of anesthetized rats to create a stable reference point. MRI images of the rodent spine were taken with the needles in situ. This information was used to accurately locate the cyst and determine the 3-dimensional entry point coordinates for nanoparticle delivery. Nanoparticles were injected into the cyst during a primary injection of 8 ul and a secondary injection of 8 ul, to prove the procedure can be accurately repeated. RESULTS: None of the rats died intra- or post-operatively. The syringomyelic cysts were accurately located with the 3-dimensional entry point coordinates. After nanoparticle delivery twice into each rat, the visualized syringomyelic cyst volume significantly decreased from 5.71±0.21 mm3 to 3.23±0.364 mm3 and to 1.48±0.722 mm3. CONCLUSIONS: The present study describes a novel strategy for precise nanoparticle delivery into a syringomyelic cyst, using measurements obtained from MRI images. This strategy may aid in developing a new method for studying chronic spinal cord injury and a novel treatment for syringomyelic cysts.


Assuntos
Cistos/patologia , Nanopartículas de Magnetita/química , Traumatismos da Medula Espinal/patologia , Siringomielia/patologia , Animais , Sistemas de Liberação de Medicamentos , Feminino , Imageamento por Ressonância Magnética , Agulhas , Ratos , Ratos Wistar , Prata/química
15.
Nanomedicine ; 11(4): 825-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652902

RESUMO

This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. FROM THE CLINICAL EDITOR: This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.


Assuntos
Anticorpos Monoclonais Murinos , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/farmacologia , Neoplasias Encefálicas/metabolismo , Bovinos , Meios de Contraste/química , Meios de Contraste/farmacologia , Glioma/metabolismo , Radiografia , Ratos , Ratos Wistar
16.
J Cancer ; 15(6): 1613-1623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370383

RESUMO

Comprehensive analysis of mortality and causes of death (COD) in cancers was of importance to conduct intervention strategies. The current study aimed to investigate the mortality rate and COD among cancers, and to explore the disparities between age. Initially, cancer patients diagnosed between 2010 and 2019 from the surveillance, epidemiology, and end results (SEER) database were extracted. Then, frequencies and percentage of deaths, and mortality rate in different age groups were calculated. Meanwhile, age distribution of different COD across tumor types was illustrated while the standardized mortality ratios (SMR) stratified by age were calculated and visualized. A total of 2,670,403 death records were included and digestive system cancer (688,953 death cases) was the most common primary cancer type. The mortality rate increased by 5.6% annually in total death, 4.0% in cancer-specific death and 10.9% in non-cancer cause. As for cancer-specific death, the age distribution varied among different primary tumor types due to prone age and prognosis of cancer. The top five non-cancer causes in patients older than 50 were cardiovascular and cerebrovascular disease, other causes, COPD and associated conditions, diabetes as well as Alzheimer. The SMRs of these causes were higher among younger patients and gradually dropped in older age groups. Mortality and COD of cancer patients were heterogeneous in age group due to primary tumor types, prone age and prognosis of cancer. Our study conducted that non-cancer COD was a critical part in clinical practice as well as cancer-specific death. Individualized treatment and clinical intervention should be made after fully considering of the risk factor for death in different diagnosis ages and tumor types.

17.
Pharmaceutics ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258135

RESUMO

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

18.
J Phys Chem Lett ; 14(40): 9112-9117, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792541

RESUMO

The role of the properties of magnetic nanoparticles in the remote magneto-mechanical actuation of biomolecules under the influence of external magnetic fields is still of particular interest. Here, a specially designed strategy based on the mechanical destruction of short oligonucleotide duplexes is used to demonstrate the effect of magnetic nanoparticles with different sizes (5-99 nm) on the magnitude of the magneto-mechanical actuations in a low-frequency alternating magnetic field. The results show that the mechanical destruction of complementary chains of duplexes, caused by the rotational-vibrational movements of nanoparticles upon exposure to a magnetic field, has a nonmonotonic dependence on the nanoparticle core size. The main hypothesis of this phenomenon is associated with a key role of magneto-dipole interactions between individual nanoparticles, which blocks the movements of nanoparticles in dense clusters. This result will allow fine-tuning of the magnetic nanoparticle properties for addressing specific magneto-mechanical tasks.


Assuntos
Nanopartículas de Magnetita , Magnetismo , Fenômenos Físicos , Campos Magnéticos
19.
Biosensors (Basel) ; 13(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37504132

RESUMO

New styryl dyes consisting of N-methylpyridine or N-methylquinoline scaffolds were synthesized, and their binding affinities for DNA in cell-free solution were studied. The replacement of heterocyclic residue from the pyridine to quinoline group as well as variation in the phenyl part strongly influenced their binding modes, binding affinities, and spectroscopic responses. Biological experiments showed the low toxicity of the obtained dyes and their applicability as selective dyes for mitochondria in living cells.


Assuntos
DNA , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , DNA/química , Mitocôndrias/metabolismo , Microscopia de Fluorescência , Células HeLa
20.
Life (Basel) ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36836645

RESUMO

Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA