Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 45(1): 298-310, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27033665

RESUMO

Nonlinear dynamics in photon capture and uptake at the photosystem level may have a strong effect on photosynthetic yield. However, the magnitude of such effects is difficult to estimate theoretically because nonlinear systems often cannot be represented accurately using equations. A nonanalytical simulation was developed that used a simple decision tree and Monte Carlo methods, instead of equations, to model how a population of photosystems absorbs and utilizes photons from an ambient light field. This simulation replicated realistic kinetics in the closure and variable fluorescence yield of PSII on the single-turnover timescale, as well as the saturating behavior in light-driven electron flow that is observed in nature with increasing irradiance. This simulation indicated that the transfer of absorbed photon energy among PSII units can introduce strong nonlinear enhancement in light-driven electron flow. However, this effect was seen only in populations with particular photosynthetic states as determined by physiological properties of PSII. Other populations with the same degree of energy transfer but with different photosynthetic states exhibited little enhancement in electron flow and, in some cases, a reduction. This nonanalytical approach provides a simple means to quantify theoretically how nonlinear dynamics in photosynthesis arise at the photosystem level and how these dynamics may act to enhance or constrain photosynthetic rates and yields. Such simulations can provide quantitative insight into different physiological bases of nonlinear light-harvesting dynamics and identify those that would have the strongest theoretical influence and thus warrant closer experimental examination.

2.
Appl Opt ; 42(15): 2767-71, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12777014

RESUMO

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft contains spectral bands that allow retrieval of solar-induced phytoplankton chlorophyll fluorescence emission radiance. Concurrent airborne laser-induced (and water-Raman normalized) phytoplankton chlorophyll fluorescence data is used to successfully validate the MODIS chlorophyll fluorescence line height (FLH) retrievals within Gulf Stream, continental slope, shelf, and coastal waters of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. Over the entire approximately 480-km flight line a correlation coefficient of r2 = 0.85 results from regression of the airborne laser data against the MODIS FLH. It is also shown that the MODIS FLH product is not influenced by blue-absorbing chromophoric dissolved organic matter absorption. These regional results strongly suggest that the FLH methodology is equally valid within similar oceanic provinces of global oceans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA