Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Shoulder Elbow Surg ; 27(10): 1800-1808, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958822

RESUMO

BACKGROUND: This study proposes a method for inferring the premorbid glenoid shape and orientation of scapulae affected by glenohumeral osteoarthritis (OA) to inform restorative surgery. METHODS: A statistical shape model (SSM) built from 64 healthy scapulae was used to reconstruct the premorbid glenoid shape based on anatomic features that are considered unaffected by OA. First, the method was validated on healthy scapulae by quantifying the accuracy of the predicted shape in terms of surface distance, glenoid version, and inclination. The SSM-based reconstruction was then applied to 30 OA scapulae. Glenoid version and inclination were measured fully automatically and compared between the original OA glenoids, SSM-based glenoid reconstructions, and healthy scapulae. RESULTS: Validation on healthy scapulae showed a root-mean-square surface distance between original and predicted glenoids of 1.0 ± 0.2 mm. The prediction error was 2.3° ± 1.8° for glenoid version and 2.1° ± 2.0° for inclination. When applied to an OA dataset, SSM-based reconstruction restored average glenoid version and inclination to values similar to the healthy situation. No differences were observed between average orientation values measured on SSM-based reconstructed and healthy scapulae (P ≥ .10). However, the average orientation of the reconstructed premorbid glenoid differed from the average orientation of OA glenoids for Walch classes A1 (version) and B2 (version, inclination, and medialization). CONCLUSION: The proposed SSM can predict the premorbid glenoid cavity of healthy scapulae with millimeter accuracy. This technique has the potential to reconstruct the premorbid glenoid cavity shape, as it was prior to OA, and thus to guide the positioning of glenoid implants in total shoulder arthroplasty.


Assuntos
Cavidade Glenoide/anatomia & histologia , Modelos Estatísticos , Osteoartrite/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Ombro , Simulação por Computador , Feminino , Cavidade Glenoide/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Osteoartrite/diagnóstico por imagem , Escápula/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
Sci Rep ; 14(1): 9644, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671059

RESUMO

Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood Flow (sMBF) or Myocardial Flow Reserve (MFR) constitutes the gold standard for prognosis assessment. We propose a systematic investigation of the value of Artificial Intelligence (AI) to leverage [ 82 Rb] Silicon PhotoMultiplier (SiPM) PET MPI for MACE prediction. We establish a general pipeline for AI model validation to assess and compare the performance of global (i.e. average of the entire MPI signal), regional (17 segments), radiomics and Convolutional Neural Network (CNN) models leveraging various MPI signals on a dataset of 234 patients. Results showed that all regional AI models significantly outperformed the global model ( p < 0.001 ), where the best AUC of 73.9% (CI 72.5-75.3) was obtained with a CNN model. A regional AI model based on MBF averages from 17 segments fed to a Logistic Regression (LR) constituted an excellent trade-off between model simplicity and performance, achieving an AUC of 73.4% (CI 72.3-74.7). A radiomics model based on intensity features revealed that the global average was the least important feature when compared to other aggregations of the MPI signal over the myocardium. We conclude that AI models can allow better personalized prognosis assessment for MACE.


Assuntos
Imagem de Perfusão do Miocárdio , Tomografia por Emissão de Pósitrons , Humanos , Imagem de Perfusão do Miocárdio/métodos , Feminino , Masculino , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Idoso , Inteligência Artificial , Radioisótopos de Rubídio , Prognóstico , Redes Neurais de Computação , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico , Circulação Coronária
3.
J Pers Med ; 14(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793058

RESUMO

The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.

4.
Eur Radiol Exp ; 7(1): 16, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947346

RESUMO

BACKGROUND: Radiomics, the field of image-based computational medical biomarker research, has experienced rapid growth over the past decade due to its potential to revolutionize the development of personalized decision support models. However, despite its research momentum and important advances toward methodological standardization, the translation of radiomics prediction models into clinical practice only progresses slowly. The lack of physicians leading the development of radiomics models and insufficient integration of radiomics tools in the clinical workflow contributes to this slow uptake. METHODS: We propose a physician-centered vision of radiomics research and derive minimal functional requirements for radiomics research software to support this vision. Free-to-access radiomics tools and frameworks were reviewed to identify best practices and reveal the shortcomings of existing software solutions to optimally support physician-driven radiomics research in a clinical environment. RESULTS: Support for user-friendly development and evaluation of radiomics prediction models via machine learning was found to be missing in most tools. QuantImage v2 (QI2) was designed and implemented to address these shortcomings. QI2 relies on well-established existing tools and open-source libraries to realize and concretely demonstrate the potential of a one-stop tool for physician-driven radiomics research. It provides web-based access to cohort management, feature extraction, and visualization and supports "no-code" development and evaluation of machine learning models against patient-specific outcome data. CONCLUSIONS: QI2 fills a gap in the radiomics software landscape by enabling "no-code" radiomics research, including model validation, in a clinical environment. Further information about QI2, a public instance of the system, and its source code is available at https://medgift.github.io/quantimage-v2-info/ . Key points As domain experts, physicians play a key role in the development of radiomics models. Existing software solutions do not support physician-driven research optimally. QuantImage v2 implements a physician-centered vision for radiomics research. QuantImage v2 is a web-based, "no-code" radiomics research platform.


Assuntos
Computação em Nuvem , Biologia Computacional , Radiologia , Radiologia/instrumentação , Radiologia/métodos , Pesquisa , Software , Modelos Teóricos , Previsões , Carcinoma/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Humanos , Aprendizado de Máquina
5.
JCO Clin Cancer Inform ; 7: e2200126, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146261

RESUMO

PURPOSE: A semiautomated pipeline for the collection and curation of free-text and imaging real-world data (RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality assurance, and to showcase the potential of RWD for precision oncology. METHODS: We collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records and was validated using process mining. The selected imaging examinations were segmented using an automatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated against expert-annotated ground-truth and clinical outcomes obtained from radiology reports. RESULTS: The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range, 1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of image-derived data compared with single time point segmentation results (classification precision increased from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with the manually curated clinical reference (median survival of 286 v 336 days, P = .89). CONCLUSION: We presented a general pipeline for the collection and curation of text- and image-based RWD, together with specific strategies to improve reliability. We showed that the resulting disease progression measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential to unlock large amounts of actionable retrospective real-world evidence from clinical records.


Assuntos
Melanoma , Medicina de Precisão , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Melanoma/diagnóstico por imagem , Imagem Multimodal
6.
CPT Pharmacometrics Syst Pharmacol ; 12(8): 1170-1181, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328961

RESUMO

The development of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy but only a fraction of patients benefits from this therapy. Model-informed drug development can be used to assess prognostic and predictive clinical factors or biomarkers associated with treatment response. Most pharmacometric models have thus far been developed using data from randomized clinical trials, and further studies are needed to translate their findings into the real-world setting. We developed a tumor growth inhibition model based on real-world clinical and imaging data in a population of 91 advanced melanoma patients receiving ICIs (i.e., ipilimumab, nivolumab, and pembrolizumab). Drug effect was modeled as an ON/OFF treatment effect, with a tumor killing rate constant identical for the three drugs. Significant and clinically relevant covariate effects of albumin, neutrophil to lymphocyte ratio, and Eastern Cooperative Oncology Group (ECOG) performance status were identified on the baseline tumor volume parameter, as well as NRAS mutation on tumor growth rate constant using standard pharmacometric approaches. In a population subgroup (n = 38), we had the opportunity to conduct an exploratory analysis of image-based covariates (i.e., radiomics features), by combining machine learning and conventional pharmacometric covariate selection approaches. Overall, we demonstrated an innovative pipeline for longitudinal analyses of clinical and imaging RWD with a high-dimensional covariate selection method that enabled the identification of factors associated with tumor dynamics. This study also provides a proof of concept for using radiomics features as model covariates.


Assuntos
Registros Eletrônicos de Saúde , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Nivolumabe , Ipilimumab , Imunoterapia/métodos
7.
Clin Transl Radiat Oncol ; 33: 153-158, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243026

RESUMO

A vast majority of studies in the radiomics field are based on contours originating from radiotherapy planning. This kind of delineation (e.g. Gross Tumor Volume, GTV) is often larger than the true tumoral volume, sometimes including parts of other organs (e.g. trachea in Head and Neck, H&N studies) and the impact of such over-segmentation was little investigated so far. In this paper, we propose to evaluate and compare the performance between models using two contour types: those from radiotherapy planning, and those specifically delineated for radiomics studies. For the latter, we modified the radiotherapy contours to fit the true tumoral volume. The two contour types were compared when predicting Progression-Free Survival (PFS) using Cox models based on radiomics features extracted from FluoroDeoxyGlucose-Positron Emission Tomography (FDG-PET) and CT images of 239 patients with oropharyngeal H&N cancer collected from five centers, the data from the 2020 HECKTOR challenge. Using Dedicated contours demonstrated better performance for predicting PFS, where Harell's concordance indices of 0.61 and 0.69 were achieved for Radiotherapy and Dedicated contours, respectively. Using automatically Resegmented contours based on a fixed intensity range was associated with a C-index of 0.63. These results illustrate the importance of using clean dedicated contours that are close to the true tumoral volume in radiomics studies, even when tumor contours are already available from radiotherapy treatment planning.

8.
Sci Rep ; 11(1): 16633, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404840

RESUMO

The hemodynamic behavior following endovascular treatment of patients with peripheral arterial disease plays a significant role on the occurrence of restenosis in femoro-popliteal (FP) arteries. The atheroprone flow conditions that are generally accepted to promote restenosis can be calculated by computational fluid dynamics (CFD) analyses, and these results can be used to assess individualized treatment outcomes. However, the impact of endovascular therapy on the flow behaviors of FP arteries are still poorly understood, as the imaging modalities used in existing numerical works (X-ray angiography, computed tomography angiography) are unable to accurately represent the post-treatment arterial geometry due to their low resolutions. Therefore, this study proposes a new algorithm that combines intra-arterial lumen geometry obtained from high-resolution optical coherence tomography (OCT) images with centerlines generated from X-ray images to reconstruct the FP artery with an in-plane resolution of 10 µm. This superior accuracy allows modeling characteristic geometrical structures, such as angioplasty-induced arterial dissections, that are too small to be reconstructed with other imaging modalities. The framework is applied on the clinical data of patients treated either with only-percutaneous transluminal angioplasty (PTA) (n = 4) or PTA followed by stenting (n = 4). Based on the generated models, PTA was found to cause numerous arterial dissections, covering approximately 10% of the total surface area of the lumen, whereas no dissections were identified in the stented arteries. CFD simulations were performed to investigate the hemodynamic conditions before and after treatment. Regardless of the treatment method, the areas affected by low time-averaged wall shear stress (< 0.5 Pa) were significantly higher (p < 0.05) following endovascular therapy (pre-PTA: 0.95 ± 0.59 cm2; post-PTA: 2.10 ± 1.09cm2; post-stent: 3.10 ± 0.98 cm2). There were no statistical differences between the PTA and the stent groups. However, within the PTA group, adverse hemodynamics were mainly concentrated at regions created by arterial dissections, which may negatively impact the outcomes of a leave-nothing-behind strategy. These observations show that OCT-based numerical models have great potential to guide clinicians regarding the optimal treatment approach.


Assuntos
Simulação por Computador , Artéria Femoral/diagnóstico por imagem , Hemodinâmica , Doença Arterial Periférica/diagnóstico por imagem , Artéria Poplítea/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Idoso , Idoso de 80 Anos ou mais , Angiografia/métodos , Feminino , Artéria Femoral/fisiopatologia , Humanos , Masculino , Doença Arterial Periférica/fisiopatologia , Artéria Poplítea/fisiopatologia
9.
Pharmaceutics ; 13(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557069

RESUMO

BACKGROUND: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. METHODS: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. RESULTS: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. CONCLUSIONS: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.

10.
Sci Rep ; 10(1): 20518, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239688

RESUMO

While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients treated with the same therapeutic regimen but who achieved different treatment outcomes. Quantitative data from magnetic resonance imaging (MRI) and 64Cu-DOTA-trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the data sets to a common image space to enable model calibration. Once the model is parameterized with these data, we forecast treatment response with and without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting predictions are able to distinguish between the two different patient responses, increasing the difference in tumor volume change between the two patients by > 40%. This work provides a proof-of-concept strategy for processing and integrating PET and MRI modalities into a predictive, clinical-mathematical framework to provide patient-specific predictions of HER2 + treatment response.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética , Modelos Biológicos , Terapia Neoadjuvante , Compostos Organometálicos/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Feminino , Humanos , Processamento de Imagem Assistida por Computador
11.
J R Soc Interface ; 17(162): 20190734, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937234

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the treatment of haematological cancers and is currently being investigated for solid tumours, including high-grade glioma brain tumours. There is a desperate need to quantitatively study the factors that contribute to the efficacy of CAR T-cell therapy in solid tumours. In this work, we use a mathematical model of predator-prey dynamics to explore the kinetics of CAR T-cell killing in glioma: the Chimeric Antigen Receptor T-cell treatment Response in GliOma (CARRGO) model. The model includes rates of cancer cell proliferation, CAR T-cell killing, proliferation, exhaustion, and persistence. We use patient-derived and engineered cancer cell lines with an in vitro real-time cell analyser to parametrize the CARRGO model. We observe that CAR T-cell dose correlates inversely with the killing rate and correlates directly with the net rate of proliferation and exhaustion. This suggests that at a lower dose of CAR T-cells, individual T-cells kill more cancer cells but become more exhausted when compared with higher doses. Furthermore, the exhaustion rate was observed to increase significantly with tumour growth rate and was dependent on level of antigen expression. The CARRGO model highlights nonlinear dynamics involved in CAR T-cell therapy and provides novel insights into the kinetics of CAR T-cell killing. The model suggests that CAR T-cell treatment may be tailored to individual tumour characteristics including tumour growth rate and antigen level to maximize therapeutic benefit.


Assuntos
Receptores de Antígenos Quiméricos , Proliferação de Células , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Linfócitos T
12.
J Cataract Refract Surg ; 45(8): 1084-1091, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31371005

RESUMO

PURPOSE: To determine surgical parameters for arcuate keratotomy by simulating the intervention with a patient-specific model. SETTING: University Eye Clinic Salzburg, Paracelsus Medical University, Austria, and Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland. DESIGN: Computational modeling study. METHODS: A new approach to plan arcuate keratotomy based on personalized finite element simulations was developed. Using this numeric tool, an optimization algorithm was implemented to determine the incision parameters that best met the surgeon's requirements while preserving the orientation of the astigmatism. Virtual surgeries were performed on patients to compare the performance of the simulation-based approach with results based on the Lindstrom and Donnenfeld nomograms and with intrastromal interventions. RESULTS: Retrospective data on 28 patients showed that personalized simulation reproduced the surgically induced change in astigmatism (Pearson correlation = 0.8). Patient-specific simulation was used to examine strategies for arcuate interventions on 621 corneal topographies. The Lindstrom nomogram resulted in low postoperative astigmatism (mean 0.03 diopter [D] ± 0.3 [SD]) but frequent overcorrections (20%). The Donnenfeld nomogram and intrastromal incisions resulted in a small amount of overcorrection (1.5%) but a wider spread in astigmatism (mean 0.63 ± 0.35 D and 0.48 ± 0.50 D, respectively). In contrast, the new numeric parameter optimization approach led to postoperative astigmatism values (mean 0.40 ± 0.08 D, 0.20 ± 0.08 D, and 0.04 ± 0.13 D) that closely matched the target astigmatism (0.40 D, 0.20 D, and 0.00 D), respectively, while keeping the number of overcorrections low (<1.5%). CONCLUSION: Using numeric modeling to optimize surgical parameters for arcuate keratotomy led to more reliable postoperative astigmatism, limiting the risk for overcorrection.


Assuntos
Astigmatismo/cirurgia , Substância Própria/cirurgia , Ceratotomia Radial/métodos , Terapia a Laser/métodos , Idoso , Astigmatismo/fisiopatologia , Simulação por Computador , Topografia da Córnea , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Nomogramas , Refração Ocular/fisiologia , Estudos Retrospectivos , Acuidade Visual/fisiologia
13.
Opt Express ; 16(13): 9284-9, 2008 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-18575492

RESUMO

A long x-ray pathway based on an x-ray back-diffraction cavity for coherent x-ray beam experiments is presented. In the present work, such a setup was tested and used for propagation-based x-ray phase contrast imaging (PBI). This setup showed to be useful for PBI purposes, with the advantage of being compact (3 m long) when compared with long x-ray synchrotron beamlines with dimensions from tens to hundreds of meters.


Assuntos
Modelos Teóricos , Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Intensificação de Imagem Radiográfica/métodos , Espalhamento de Radiação , Raios X
14.
APL Bioeng ; 2(3)2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30456343

RESUMO

Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to noninvasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom "tumor" system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.

15.
Front Cell Dev Biol ; 6: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896473

RESUMO

Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of "biological space-time" in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

16.
J Radiat Res ; 54 Suppl 1: i162-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824122

RESUMO

In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.


Assuntos
Aceleradores de Partículas , Radiometria/métodos , Diagnóstico por Imagem/métodos , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Íons , Imãs , Óptica e Fotônica , Prótons , Radiobiologia/instrumentação , Radiobiologia/métodos , Síncrotrons
17.
J Radiat Res ; 54 Suppl 1: i49-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824126

RESUMO

Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results.


Assuntos
Técnicas de Apoio para a Decisão , Radioterapia/efeitos adversos , Radioterapia/métodos , Algoritmos , Simulação por Computador , Tomada de Decisões , Humanos , Cadeias de Markov , Qualidade de Vida
18.
J Radiat Res ; 54 Suppl 1: i56-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824127

RESUMO

The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.


Assuntos
Disseminação de Informação/métodos , Terapia com Prótons/métodos , Acesso à Informação , Algoritmos , Bases de Dados Factuais , Europa (Continente) , Humanos , Comunicação Interdisciplinar , Informática Médica , Terapia com Prótons/estatística & dados numéricos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA