Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomed J ; : 100746, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734408

RESUMO

Mpox is a zoonotic disease caused by the monkeypox virus (MPV), primarily found in Central and West African countries. The typical presentation of the disease before the 2022 mpox outbreak includes a febrile prodrome 5-13 days post-exposure, accompanied by lymphadenopathy, malaise, headache, and muscle aches. Unexpectedly, during the 2022 outbreak, several cases of atypical presentations of the disease were reported, such as the absence of prodromal symptoms and the presence of genital skin lesions suggestive of sexual transmission. As per the World Health Organization (WHO), as of March 20, 2024, 94,707 cases of mpox were reported worldwide, resulting in 181 deaths (22 in African endemic regions and 159 in non-endemic countries). The United States Centers for Disease Control and Prevention (CDC) reports a total of 32,063 cases (33.85% of total cases globally), with 58 deaths (32.04% of global deaths) due to mpox. Person-to-person transmission of mpox can occur through respiratory droplets and sustained close contact. However, during the 2022 outbreak of mpox, a high incidence of anal and perianal lesions among MSMs indicated sexual transmission of MPV as a major route of transmission. Since MSMs are disproportionately at risk for HIV transmission, this review discusses the risk factors, transmission patterns, pathogenesis, vaccine, and treatment options for mpox among MSM and people living with HIV (PLWH). Furthermore, we provide a brief perspective on the evolution of the MPV in immunocompromised people like PLWH.

2.
Antiviral Res ; 227: 105904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729306

RESUMO

Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/farmacologia , Hidroxilaminas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Chlorocebus aethiops , Animais , Leucina/análogos & derivados , Leucina/farmacologia , Células Vero , Sinergismo Farmacológico , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , COVID-19/virologia
3.
iScience ; 27(8): 110501, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39171289

RESUMO

Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.

4.
Biol. Res ; 47: 1-8, 2014. graf, tab
Artigo em Inglês | LILACS | ID: biblio-950718

RESUMO

BACKGROUND: Human Immunodeficiency Virus Type 1 (HIV-1) viral load testing at regular intervals is an integral component of disease management in Acquired Immunodeficiency Syndrome (AIDS) patients. The need in countries like India is therefore an assay that is not only economical but efficient and highly specific for HIV-1 sub type C virus. This study reports a SYBR Green-based HIV-1 real time PCR assay for viral load testing and is designed for enhanced specificity towards HIV-1 sub type C viruses prevalent in India. RESULTS: Linear regression of the observed and reference concentration of standards used in this study generated a correlation coefficient of 0.998 (p<0.001). Lower limit of detection of the test protocol was 50 copies/ml of plasma. The assay demonstrated 100% specificity when tested with negative control sera. The Spearman coefficient of the reported assay with an US-FDA approved, Taqman probe-based commercial kit was found to be 0.997. No significant difference in viral load was detected when the SYBR Green based assay was used to test infected plasma stored at -20°C and room temperature for 7 days respectively (Wilcoxon signed rank test, p=0.105). In a comparative study on 90 pretested HIV-1 positive samples with viral loads ranging from 5,000 - 25,000 HIV-1 RNA copies/ml and between two commercial assays it was found that the later failed to amplify in 13.33% and 10% samples respectively while in 7.77% and 4.44% samples the copy number values were reduced by >0.5 log value, a figure that is considered clinically significant by physicians. CONCLUSION: The HIV-1 viral load assay reported in this study was found to be robust, reliable, economical and effective in resource limited settings such as those existing in India. PCR probes specially designed from HIV-1 Subtype C-specific nucleotide sequences originating from India imparted specificity towards such isolates and demonstrated superior results when compared to two similar commercial assays widely used in India.


Assuntos
Humanos , RNA Viral/sangue , Infecções por HIV/diagnóstico , HIV-1/isolamento & purificação , Carga Viral/métodos , Compostos Orgânicos , Kit de Reagentes para Diagnóstico/economia , Sequência de Bases/genética , Genes gag/genética , Modelos Lineares , Sensibilidade e Especificidade , HIV-1/classificação , Estatísticas não Paramétricas , Gerenciamento Clínico , Limite de Detecção , Reação em Cadeia da Polimerase em Tempo Real , Invenções , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA