Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 6: 29800, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418240

RESUMO

Atmosphere-ocean coupling effect on the frequency distribution of tropical cyclones (TCs) and its future change is studied using an atmosphere and ocean coupled general circulation model (AOGCM). In the present climate simulation, the atmosphere-ocean coupling in the AOGCM improves biases in the AGCM such as the poleward shift of the maximum of intense TC distribution in the Northern Hemisphere and too many intense TCs in the Southern Hemisphere. Particularly, subsurface cold water plays a key role to reduce these AGCM biases of intense TC distribution. Besides, the future change of intense TC distribution is significantly different between AOGCM and AGCM despite the same monthly SST. In the north Atlantic, subsurface warming causes larger increase in frequency of intense TCs in AOGCM than that in AGCM. Such subsurface warming in AOGCM also acts to alter large decrease of intense TC in AGCM to no significant change in AOGCM over the southwestern Indian Ocean. These results suggest that atmosphere-ocean coupling characterized by subsurface oceanic structure is responsible for more realistic intense TC distribution in the current climate simulation and gives significant impacts on its future projection.

2.
Sci Rep ; 6: 28427, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27414998

RESUMO

The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA