Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(2): e1009225, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596266

RESUMO

Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.


Assuntos
Descoberta de Drogas , SARS-CoV-2/fisiologia , Tropismo Viral , Internalização do Vírus , Replicação Viral , COVID-19/virologia , Catepsinas , Linhagem Celular , Desenvolvimento de Medicamentos , Endocitose , Furina , Humanos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases , Tratamento Farmacológico da COVID-19
2.
Bioorg Med Chem Lett ; 89: 129303, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146837

RESUMO

Lens epithelial-derived growth factor (LEDGF) increases the efficiency of proviral DNA integration into the host genome by interacting with HIV integrase (IN) and directing it to a chromatin environment that favors viral transcription. Allosteric integrase inhibitors (ALLINIs), such as known 2-(tert-butoxy)acetic acid (1), bind to the LEDGF pocket on the catalytic core domain (CCD) of IN, but exert more potent antiviral activities by inhibition of late-stage HIV-1 replication events than through disruption of proviral integration at an earlier phase. A high-throughput screen (HTS) for compounds that disrupt IN-LEDGF interaction led to the identification of a novel arylsulfonamide series, as exemplified by 2, possessing ALLINI-like properties. Further SAR studies led to more potent compound 21 and provided key chemical biology probes revealing that arylsulfonamides are a novel class of ALLINIs with a distinct binding mode than that of 2-(tert-butoxy)acetic acids.


Assuntos
Fármacos Anti-HIV , Inibidores de Integrase de HIV , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Regulação Alostérica , Domínio Catalítico , Integrase de HIV/metabolismo
3.
Neurobiol Dis ; 159: 105507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509608

RESUMO

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Assuntos
Benzoxazóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/genética , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Lisossomos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Cultura Primária de Células , Agregados Proteicos , Ratos , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo
4.
Anal Chem ; 93(23): 8161-8169, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032423

RESUMO

Polysorbate is widely used to maintain stability of biotherapeutic proteins in pharmaceutical formulation development. Degradation of polysorbate can lead to particle formation in drug products, which is a major quality concern and potential patient risk factor. Enzymatic activity from residual host cell enzymes such as lipases and esterases plays a major role for polysorbate degradation. Their high activity, often at very low concentration, constitutes a major analytical challenge in the biopharmaceutical industry. In this study, we evaluated and optimized the activity-based protein profiling (ABPP) approach to identify active enzymes responsible for polysorbate degradation. Using an optimized chemical probe, we established the first global profile of active serine hydrolases in harvested cell culture fluid (HCCF) for monoclonal antibodies (mAbs) production from two Chinese hamster ovary (CHO) cell lines. A total of eight known lipases were identified by ABPP with enzyme activity information, while only five lipases were identified by a traditional abundance-based proteomics (TABP) approach. Interestingly, phospholipase B-like 2 (PLBL2), a well-known problematic HCP was not found to be active in process-intermediates from two different mAbs. In a proof-of-concept study with downstream samples, phospholipase A2 group VII (PLA2G7) was only identified by ABPP and confirmed to contribute to polysorbate-80 degradation for the first time. The established ABBP approach is approved to be able to identify low-abundance host cell enzymes and fills the gap between lipase abundance and activity, which enables more meaningful polysorbate degradation investigations for biotherapeutic development.


Assuntos
Produtos Biológicos , Polissorbatos , Animais , Anticorpos Monoclonais , Células CHO , Cricetinae , Cricetulus , Humanos
5.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391232

RESUMO

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Assuntos
Mpox , Orthopoxvirus , Varíola , Vírus da Varíola , Animais , Camundongos , Humanos , Nucleosídeos/uso terapêutico , Varíola/tratamento farmacológico , Varíola/prevenção & controle , Modelos Animais de Doenças
6.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229758

RESUMO

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

7.
Viruses ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066320

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).


Assuntos
Antivirais , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , COVID-19/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia
8.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38365209

RESUMO

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Assuntos
COVID-19 , Glutamina , Humanos , Glutamina/química , SARS-CoV-2 , Cisteína Endopeptidases/química , Invenções , Inibidores de Proteases/farmacologia , Amidas , Antivirais/farmacologia , Antivirais/química
9.
GigaByte ; 2023: gigabyte76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969711

RESUMO

The Gulf pipefish Syngnathus scovelli has emerged as an important species for studying sexual selection, development, and physiology. Comparative evolutionary genomics research involving fishes from Syngnathidae depends on having a high-quality genome assembly and annotation. However, the first S. scovelli genome assembled using short-read sequences and a smaller RNA-sequence dataset has limited contiguity and a relatively poor annotation. Here, using PacBio long-read high-fidelity sequences and a proximity ligation library, we generate an improved assembly to obtain 22 chromosome-level scaffolds. Compared to the first assembly, the gaps in the improved assembly are smaller, the N75 is larger, and our genome is ~95% BUSCO complete. Using a large body of RNA-Seq reads from different tissue types and NCBI's Eukaryotic Annotation Pipeline, we discovered 28,162 genes, of which 8,061 are non-coding genes. Our new genome assembly and annotation are tagged as a RefSeq genome by NCBI and provide enhanced resources for research work involving S. scovelli..

10.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793422

RESUMO

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

11.
ACS Chem Biol ; 17(9): 2595-2604, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36044633

RESUMO

Although current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells. Tool compounds ICeD-1 and ICeD-2 ("inducer of cell death-1 and 2"), optimized for potency and selectivity from screening hits, were used to deconvolute the mechanism of action using a combination of chemoproteomic, biochemical, pharmacological, and genetic approaches. We determined that these compounds function by modulating dipeptidyl peptidase 9 (DPP9) and activating the caspase recruitment domain family member 8 (CARD8) inflammasome. Efficacy of ICeD-1 and ICeD-2 was dependent on HIV-1 protease activity and synergistic with efavirenz, which promotes premature activation of HIV-1 protease at high concentrations in infected cells. This in vitro synergy lowers the efficacious cell kill concentration of efavirenz to a clinically relevant dose at concentrations of ICeD-1 or ICeD-2 that do not result in complete DPP9 inhibition. These results suggest engagement of the pyroptotic pathway as a potential approach to eliminate HIV-1 infected cells.


Assuntos
Infecções por HIV , HIV-1 , Alcinos , Benzoxazinas , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ciclopropanos , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Inflamassomos/metabolismo , Leucócitos Mononucleares , Proteínas de Neoplasias/metabolismo
12.
ACS Med Chem Lett ; 12(8): 1275-1282, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413956

RESUMO

PKG1α is a central node in cGMP signaling. Current therapeutics that look to activate this pathway rely on elevation of cGMP levels and subsequent activation of PKG1α. Direct activation of PKG1α could potentially drive additional efficacy without associated side effects of blanket cGMP elevation. We undertook a high-throughput screen to identify novel activators. After triaging through numerous false positive hits, attributed to compound mediated oxidation and activation of PKG1α, a piperidine series of compounds was validated. The hit 1 was a weak activator with EC50 = 47 µM. The activity could be improved to single digit micromolar, as seen in compounds 21 and 25 (7.0 and 3.7 µM, respectively). Several compounds were tested in a pVASP cell-based assay, and for compounds with moderate permeability, good agreement was observed between the biochemical and functional assays. These compounds will function as efficient tools to further interrogate PKG1α biology.

13.
ACS Med Chem Lett ; 12(4): 540-547, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854701

RESUMO

A novel series of histone deacetylase (HDAC) inhibitors lacking a zinc-binding moiety has been developed and described herein. HDAC isozyme profiling and kinetic studies indicate that these inhibitors display a selectivity preference for HDACs 1, 2, 3, 10, and 11 via a rapid equilibrium mechanism, and crystal structures with HDAC2 confirm that these inhibitors do not interact with the catalytic zinc. The compounds are nonmutagenic and devoid of electrophilic and mutagenic structural elements and exhibit off-target profiles that are promising for further optimization. The efficacy of this new class in biochemical and cell-based assays is comparable to the marketed HDAC inhibitors belinostat and vorinostat. These results demonstrate that the long-standing pharmacophore model of HDAC inhibitors requiring a metal binding motif should be revised and offers a distinct class of HDAC inhibitors.

14.
ACS Med Chem Lett ; 12(1): 99-106, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488970

RESUMO

By employing a phenotypic screen, a set of compounds, exemplified by 1, were identified which potentiate the ability of histone deacetylase inhibitor vorinostat to reverse HIV latency. Proteome enrichment followed by quantitative mass spectrometric analysis employing a modified analogue of 1 as affinity bait identified farnesyl transferase (FTase) as the primary interacting protein in cell lysates. This ligand-FTase binding interaction was confirmed via X-ray crystallography and temperature dependent fluorescence studies, despite 1 lacking structural and binding similarity to known FTase inhibitors. Although multiple lines of evidence established the binding interaction, these ligands exhibited minimal inhibitory activity in a cell-free biochemical FTase inhibition assay. Subsequent modification of the biochemical assay by increasing anion concentration demonstrated FTase inhibitory activity in this novel class. We propose 1 binds together with the anion in the active site to inhibit farnesyl transferase. Implications for phenotypic screening deconvolution and HIV reactivation are discussed.

15.
Cell Chem Biol ; 27(1): 32-40.e3, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31653597

RESUMO

Proprotein convertase substilisin-like/kexin type 9 (PCSK9) is a serine protease involved in a protein-protein interaction with the low-density lipoprotein (LDL) receptor that has both human genetic and clinical validation. Blocking this protein-protein interaction prevents LDL receptor degradation and thereby decreases LDL cholesterol levels. Our pursuit of small-molecule direct binders for this difficult to drug PPI target utilized affinity selection/mass spectrometry, which identified one confirmed hit compound. An X-ray crystal structure revealed that this compound was binding in an unprecedented allosteric pocket located between the catalytic and C-terminal domain. Optimization of this initial hit, using two distinct strategies, led to compounds with high binding affinity to PCSK9. Direct target engagement was demonstrated in the cell lysate with a cellular thermal shift assay. Finally, ligand-induced protein degradation was shown with a proteasome recruiting tag attached to the high-affinity allosteric ligand for PCSK9.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Pró-Proteína Convertase 9/metabolismo , Proteólise/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Serina Proteinase/química , Bibliotecas de Moléculas Pequenas/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-29702552

RESUMO

BACKGROUND: Exposure to environmental tobacco smoke (ETS) presents substantial health risks for pregnant women and newborn infants. Measurements of ETS include invasive and expensive biochemical tests, as well as less invasive and lower-cost, self-reported exposure and avoidance measures. Better understanding of self-report measures will help to select ETS assessments for evaluation. METHODS: This analysis was conducted within the context of a tailored video intervention to reduce tobacco smoking and ETS exposure during pregnancy and after delivery in the control group sample of 147 nonsmoking women. Measurements of salivary cotinine concentration, self-reported ETS exposure, and avoidance behaviors were captured at 32 weeks’ gestation and 6 months postpartum. RESULTS: Salivary cotinine concentration was significantly related to ETS avoidance among pregnant nonsmokers at 32 weeks’ gestation, but not ETS exposure. At 6 months postpartum, both the reported ETS exposure of the infant and maternal avoidance behaviors to reduce her infant’s exposure were associated with the infant’s salivary cotinine concentration. At 32 weeks’ gestation and 6 months postpartum, avoidance behaviors decreased as exposure increased. DISCUSSION: This study suggests that for nonsmoking women during pregnancy, reports of tobacco smoke avoidance are more valid than reports of exposure. After delivery, self-reported ETS exposure or avoidance are associated with each other and the biochemical measurement of salivary cotinine. These results provide researchers and clinicians with evidence to support the inclusion of avoidance behaviors in the selection of ETS measures.


Assuntos
Aprendizagem da Esquiva , Cotinina/análise , Exposição Ambiental/análise , Autorrelato/estatística & dados numéricos , Poluição por Fumaça de Tabaco , Adulto , Estudos de Casos e Controles , Família , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Saliva/química , Abandono do Hábito de Fumar , Nicotiana , Adulto Jovem
17.
Nat Biotechnol ; 20(8): 805-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12091914

RESUMO

Proteomics research requires methods to characterize the expression and function of proteins in complex mixtures. Toward this end, chemical probes that incorporate known affinity labeling agents have facilitated the activity-based profiling of certain enzyme families. To accelerate the discovery of proteomics probes for enzyme classes lacking cognate affinity labels, we describe here a combinatorial strategy. Members of a probe library bearing a sulfonate ester chemotype were screened against complex proteomes for activity-dependent protein reactivity, resulting in the labeling of at least six mechanistically distinct enzyme classes. Surprisingly, none of these enzymes represented targets of previously described proteomics probes. The sulfonate library was used to identify an omega-class glutathione S-transferase whose activity was upregulated in invasive human breast cancer lines. These results indicate that activity-based probes compatible with whole-proteome analysis can be developed for numerous enzyme classes and applied to identify enzymes associated with discrete pathological states.


Assuntos
Marcadores de Afinidade/metabolismo , Enzimas/classificação , Enzimas/metabolismo , Proteômica/métodos , Marcadores de Afinidade/química , Animais , Sítios de Ligação , Neoplasias da Mama/enzimologia , Células COS , Técnicas de Química Combinatória , Enzimas/química , Enzimas/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Camundongos , Técnicas de Sonda Molecular , Estrutura Molecular , Células Tumorais Cultivadas
18.
ACS Chem Biol ; 12(11): 2858-2865, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29024587

RESUMO

Allosteric integrase inhibitors (ALLINIs) bind to the lens epithelial-derived growth factor (LEDGF) pocket on HIV-1 integrase (IN) and possess potent antiviral effects. Rather than blocking proviral integration, ALLINIs trigger IN conformational changes that have catastrophic effects on viral maturation, rendering the virions assembled in the presence of ALLINIs noninfectious. A high-throughput screen for compounds that disrupt the IN·LEDGF interaction was executed, and extensive triage led to the identification of a t-butylsulfonamide series, as exemplified by 1. The chemical, biochemical, and virological characterization of this series revealed that 1 and its analogs produce an ALLINI-like phenotype through engagement of IN sites distinct from the LEDGF pocket. Key to demonstrating target engagement and differentiating this new series from the existing ALLINIs was the development of a fluorescence polarization probe of IN (FLIPPIN) based on the t-butylsulfonamide series. These findings further solidify the late antiviral mechanism of ALLINIs and point toward opportunities to develop structurally and mechanistically novel antiretroviral agents with unique resistance patterns.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Linhagem Celular , Descoberta de Drogas , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia
19.
SLAS Discov ; 22(8): 995-1006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28426940

RESUMO

High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Heurística , Interface Usuário-Computador , Aprendizado de Máquina
20.
Am J Mens Health ; 10(6): NP145-NP154, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26130731

RESUMO

Chronic disease has become one of the largest health burdens facing the developed world. Men are at a higher risk of being diagnosed with chronic disease than women. Although lifestyle interventions have been shown to reduce the risk of chronic disease in participants, men are often underrepresented in such programs. The purpose of this study was to explore the individual-level and program-specific factors that affect male participation rates in chronic disease prevention and management (CDPM) programs. A scoping review methodology was selected, and 25 studies met the criteria for inclusion in the review. Results showed that traditional group-based programs that focused on topics such as nutrition and physical activity were often seen by men as inherently feminine, which served as a barrier for participation. Program-specific factors that attracted men to participate in interventions included a group component with like-minded men, the use of humor in the delivery of health information, the inclusion of both nutrition and physical activity components, and the presence of some manner of competition. A past negative health event, personal concern for health status, and motivation to improve physical appearance were cited by men as facilitators to CDPM program participation. Gaps in the research are identified, and results of this study can be used to inform the development of CDPM programs that will improve the engagement and participation of men.


Assuntos
Doença Crônica/prevenção & controle , Comportamentos Relacionados com a Saúde , Promoção da Saúde/organização & administração , Nível de Saúde , Saúde do Homem , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA