Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378148

RESUMO

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Assuntos
Hydra , Animais , Hydra/fisiologia , Boca/fisiologia , Epitélio , Fenômenos Biomecânicos , Neurônios
2.
J Am Chem Soc ; 145(3): 1826-1834, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633459

RESUMO

Transport mechanisms of solvated protons of 1 M HCl acid pools, confined within reverse micelles (RMs) containing the negatively charged surfactant sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) or the positively charged cetyltrimethylammonium bromide (CTABr), are analyzed with reactive force field simulations to interpret dynamical signatures from TeraHertz absorption and dielectric relaxation spectroscopy. We find that the forward proton hopping events for NaAOT are further suppressed compared to a nonionic RM, while the Grotthuss mechanism ceases altogether for CTABr. We attribute the sluggish proton dynamics for both charged RMs as due to headgroup and counterion charges that expel hydronium and chloride ions from the interface and into the bulk interior, thereby increasing the pH of the acid pools relative to the nonionic RM. For charged NaAOT and CTABr RMs, the localization of hydronium near a counterion or conjugate base reduces the Eigen and Zundel configurations that enable forward hopping. Thus, localized oscillatory hopping dominates, an effect that is most extreme for CTABr in which the proton residence time increases dramatically such that even oscillatory hopping is slow.

3.
Phys Chem Chem Phys ; 24(21): 13413-13415, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594164

RESUMO

As outlined in our paper, we developed a model which is able to explain all recorded THz pump-probe data at 12.3 THz in the static water cell as well as in the liquid jet. The model includes an instantaneous temperature-dependent response by an acoustic phonon, an inherent non-linear response of water, and a slower thermal response. The order of magnitude of the non-linear contributions agrees with previous experimental results by us2 and other groups (see ref. 32, 33 and 35 in ref. 1) as well as with simulations2, which predict an enhanced non-linear response of water in the frequency range of the libration.

4.
Phys Chem Chem Phys ; 24(2): 653-665, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34570144

RESUMO

The dynamical complexity of the hydrogen-bonded water network can be investigated with intense Terahertz (THz) spectroscopy, which can drive the liquid into the nonlinear response regime and probe anharmonicity effects. Here we report single-color and polarization-dependent pump-probe experiments at 12.3 THz on liquid water, exciting the librational mode. By comparing results obtained on a static sample and a free-flowing water jet, we are able to disentangle the distinct contributions by thermal, acoustic, and nonlinear optical effects. We show that the transient transmission by the static water layer on a time scale of hundreds of microseconds can be described by thermal (slow) and acoustic (temperature-dependent) effects. In addition, during pump probe overlap we observe an anisotropic nonlinear optical response. This nonlinear signal is more prominent in the liquid jet than in the static cell, where temperature and density perturbations are more pronounced. Our measurements confirm that the THz excitation resonates with the rotationally-damped motion of water molecules, resulting in enhanced transient anisotropy. This model can be used to explain the non-linear response of water in the frequency range between about 1 and 20 THz.

5.
Phys Chem Chem Phys ; 24(45): 27893-27899, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367079

RESUMO

Aqueous hyaluronan solutions form an elastic hydrogel within a narrow pH range, around pH 2.4, making this a model system to study the conformational changes of the hydrogen bond network upon gelation. This pH-dependent behavior allows us to probe water surrounding a biologically relevant molecule in different environments (liquid versus elastic state) which change due to an environmental stimulus. Here, we use Terahertz (THz) reflection absorption spectroscopy in attenuated total reflection (ATR) geometry as a tool to study gelation. THz spectroscopy is sensitive to changes in the hydrogen-bonded water network, and here we show that we can correlate changes in macroscopic properties to changes in the solvation of hyaluronan. Above and below the gelation pH, solvated protons are present in the solutions, however, this spectral signature is completely absent between pH 2.4-2.8, which is the pH at which hyaluronan forms a hydrogel. We propose that solvated protons are forming ion pairs with hyaluronan in this pH range. Adding urea or glucose to hyaluronan solutions changes their elasticity, in which an increase or decrease in elasticity can be linked to the formation and destruction of these ion pairs, respectively.


Assuntos
Hidrogéis , Prótons , Ácido Hialurônico/química , Ligação de Hidrogênio , Água/química
6.
Biophys J ; 120(7): 1266-1275, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33515602

RESUMO

Formation of biomolecular condensates through liquid-liquid phase separation (LLPS) has emerged as a pervasive principle in cell biology, allowing compartmentalization and spatiotemporal regulation of dynamic cellular processes. Proteins that form condensates under physiological conditions often contain intrinsically disordered regions with low-complexity domains. Among them, the RNA-binding proteins FUS and TDP-43 have been a focus of intense investigation because aberrant condensation and aggregation of these proteins is linked to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. LLPS occurs when protein-rich condensates form surrounded by a dilute aqueous solution. LLPS is per se entropically unfavorable. Energetically favorable multivalent protein-protein interactions are one important aspect to offset entropic costs. Another proposed aspect is the release of entropically unfavorable preordered hydration water into the bulk. We used attenuated total reflection spectroscopy in the terahertz frequency range to characterize the changes in the hydrogen bonding network accompanying the FUS enrichment in liquid-liquid phase-separated droplets to provide experimental evidence for the key role of the solvent as a thermodynamic driving force. The FUS concentration inside LLPS droplets was determined to be increased to 2.0 mM independent of the initial protein concentration (5 or 10 µM solutions) by fluorescence measurements. With terahertz spectroscopy, we revealed a dewetting of hydrophobic side chains in phase-separated FUS. Thus, the release of entropically unfavorable water populations into the bulk goes hand in hand with enthalpically favorable protein-protein interaction. Both changes are energetically favorable, and our study shows that both contribute to the thermodynamic driving force in phase separation.


Assuntos
Esclerose Lateral Amiotrófica , Água , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos , Proteína FUS de Ligação a RNA , Solventes
7.
Angew Chem Int Ed Engl ; 60(48): 25419-25427, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34402145

RESUMO

The properties of the water network in concentrated HCl acid pools in nanometer-sized reverse nonionic micelles were probed with TeraHertz absorption, dielectric relaxation spectroscopy, and reactive force field simulations capable of describing proton hopping mechanisms. We identify that only at a critical micelle size of W0 =9 do solvated proton complexes form in the water pool, accompanied by a change in mechanism from Grotthuss forward shuttling to one that favors local oscillatory hopping. This is due to a preference for H+ and Cl- ions to adsorb to the micelle interface, together with an acid concentration effect that causes a "traffic jam" in which the short-circuiting of the hydrogen-bonding motif of the hydronium ion decreases the forward hopping rate throughout the water interior even as the micelle size increases. These findings have implications for atmospheric chemistry, biochemical and biophysical environments, and energy materials, as transport of protons vital to these processes can be suppressed due to confinement, aggregation, and/or concentration.

8.
Phys Chem Chem Phys ; 22(14): 7451-7459, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215444

RESUMO

Electron transfer processes between proteins are vital in many biological systems. Yet, the role of the solvent in influencing these redox reactions remains largely unknown. In this study, terahertz-time domain spectroscopy (THz-TDS) is used to probe the collective hydration dynamics of flavoenzyme ferredoxin-NADP+-reductase (FNR), electron transfer protein ferredoxin-1 (PetF), and the transient complex that results from their interaction. Results reveal changes in the sub-picosecond hydration dynamics that are dependent upon the surface electrostatic properties of the individual proteins and the transient complex. Retarded solvent dynamics of 8-9 ps are observed for FNR, PetF, and the FNR:PetF transient complex. Binding of the FNR:PetF complex to the substrate NADP+ results in bulk-like solvent dynamics of 7 ps, showing that formation of the ternary complex is entropically favored. Our THz measurements reveal that the electrostatic interaction of the protein surface with water results in charge sensitive changes in the solvent dynamics. Complex formation between the positively charged FNR:NADP+ pre-complex and the negatively charged PetF is not only entropically favored, but in addition the solvent reorganization into more bulk-like water assists the molecular recognition process. The change in hydration dynamics observed here suggests that the interaction with the solvent plays a significant role in mediating electron transfer processes between proteins.


Assuntos
Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Modelos Moleculares , Solventes/química , Água/química , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Análise Espectral , Eletricidade Estática
9.
Phys Chem Chem Phys ; 19(16): 10481-10490, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28383584

RESUMO

Sea spray aerosols (SSA) are known to have an organic coating that is mainly composed of fatty acids. In this study, the effect of pH and salt on the stability and organization of a palmitic acid (PA) monolayer is investigated by surface vibrational spectroscopy and molecular dynamics simulations. Results indicate that alkyl chain packing becomes more disordered as the carboxylic headgroup becomes deprotonated. This is associated with packing mismatch of charged and neutral species as charged headgroups penetrate deeper into the solution phase. At pH 10.7, when the monolayer is ∼99% deprotonated, palmitate (PA-) molecules desorb and solubilize into the bulk solution where there is spectroscopic evidence for aggregate formation. Yet, addition of 100 mM NaCl to the bulk solution is found to drive PA- molecules to the aqueous surface. Free energy calculations show that PA- molecules become stabilized within the interface with increasing NaCl concentration. Formation of contact -COO-:Na+ pairs alters the hydration state of PA- headgroups, thus increasing the surface propensity. As salts are highly concentrated in SSA, these results suggest that deprotonated fatty acids may be found at the air-aqueous interface of aerosol particles due to sea salt's role in surface stabilization.

10.
Phys Chem Chem Phys ; 18(47): 32345-32357, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27854367

RESUMO

Transition metals are known to be enriched in organic-coated marine aerosols, but the impact these cations have on their surface properties is not well understood. Here the effect of Zn2+ enrichment on the surface properties of a dipalmitoylphosphatidylcholine (DPPC) monolayer was investigated and compared to that of the alkaline earth metal Sr2+, an ion not enriched in aerosols. Phase behavior of the DPPC film on concentrated aqueous solutions was probed with surface pressure-area isotherms while domain morphology was monitored with Brewster angle microscopy (BAM). Infrared reflection-absorption spectroscopy (IRRAS) and vibrational sum frequency generation (VSFG) spectroscopy were used to assess the impact of cations on the conformation and orientation of alkyl chains as well as the hydration state of the carbonyl and phosphatidylcholine (PC) moieties. Results of compression isotherms and BAM show that Zn2+ strongly interacts with DPPC molecules, and induces condensation of the monolayer while Sr2+ only weakly interacts with the monolayer in expanded phases. Conformational order and orientation of alkyl chains in the condensed phase are not significantly altered by either cation. IRRAS indicates that Sr2+ has weak interactions with the PC headgroup. Zn2+ ions cause dehydration of carbonyl groups and binds to the phosphate group in a 2 : 1 bridging complex. Findings here suggest that Sr2+ is not enriched in aerosols because it behaves similar to a monovalent ion and only weakly interacts with the monolayer, while enrichment of Zn2+ is due to strong binding to the lipid film.

11.
Nat Protoc ; 19(2): 565-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087082

RESUMO

To produce abundant cell culture samples to generate large, standardized image datasets of human induced pluripotent stem (hiPS) cells, we developed an automated workflow on a Hamilton STAR liquid handler system. This was developed specifically for culturing hiPS cell lines expressing fluorescently tagged proteins, which we have used to study the principles by which cells establish and maintain robust dynamic localization of cellular structures. This protocol includes all details for the maintenance, passage and seeding of cells, as well as Matrigel coating of 6-well plastic plates and 96-well optical-grade, glass plates. We also developed an automated image-based hiPS cell colony segmentation and feature extraction pipeline to streamline the process of predicting cell count and selecting wells with consistent morphology for high-resolution three-dimensional (3D) microscopy. The imaging samples produced with this protocol have been used to study the integrated intracellular organization and cell-to-cell variability of hiPS cells to train and develop deep learning-based label-free predictions from transmitted-light microscopy images and to develop deep learning-based generative models of single-cell organization. This protocol requires some experience with robotic equipment. However, we provide details and source code to facilitate implementation by biologists less experienced with robotics. The protocol is completed in less than 10 h with minimal human interaction. Overall, automation of our cell culture procedures increased our imaging samples' standardization, reproducibility, scalability and consistency. It also reduced the need for stringent culturist training and eliminated culturist-to-culturist variability, both of which were previous pain points of our original manual pipeline workflow.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microscopia , Reprodutibilidade dos Testes , Técnicas de Cultura de Células/métodos , Automação
12.
Nat Commun ; 13(1): 4210, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864099

RESUMO

The theoretical basis for linking spectral signatures of hydrated excess protons with microscopic proton-transfer mechanisms has so far relied on normal-mode analysis. We introduce trajectory-decomposition techniques to analyze the excess-proton dynamics in ab initio molecular-dynamics simulations of aqueous hydrochloric-acid solutions beyond the normal-mode scenario. We show that the actual proton transfer between two water molecules involves for relatively large water-water separations crossing of a free-energy barrier and thus is not a normal mode, rather it is characterized by two non-vibrational time scales: Firstly, the broadly distributed waiting time for transfer to occur with a mean value of 200-300 fs, which leads to a broad and weak shoulder in the absorption spectrum around 100 cm-1, consistent with our experimental THz spectra. Secondly, the mean duration of a transfer event of about 14 fs, which produces a rather well-defined spectral contribution around 1200 cm-1 and agrees in location and width with previous experimental mid-infrared spectra.

13.
J Colloid Interface Sci ; 608(Pt 2): 2169-2180, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798383

RESUMO

Specific interactions of yttrium and lanthanum ions with a fatty acid Langmuir monolayer were investigated using vibrational sum frequency spectroscopy. The trivalent ions were shown to interact with the charged form of the carboxylic acid group from nanomolar concentrations (<300 nM). Analysis of the spectral features from both the symmetric and the asymmetric carboxylate modes reveals the presence of at least three distinct coordination structures linked to specific binding configurations. Although the same species were identified for both La3+ and Y3+, they display a different concentration dependence, highlighting the ion-specificity of the interaction. From the analysis of the response of interfacial water molecules, the reversal of the surface charge, as well as the formation of yttrium hydroxide complexes, were detected upon increasing the amount of salt in solution. The binding interaction and kinetics of absorption are sensitive to the solution pH, showing a distinct ion speciation in the interfacial region when compared to the bulk. Changing the subphase pH or adding a monovalent background electrolyte that promotes deprotonation of the carboxylic acid headgroup could further improve the detection limit of La3+ and Y3+ to concentrations < 100 nM. These findings demonstrate that nM concentrations of trace metals contaminants, typically found on monovalent salts, can significantly influence the binding structure and kinetics in Langmuir monolayers.


Assuntos
Ácidos Carboxílicos , Água , Íons , Limite de Detecção , Vibração
14.
JACS Au ; 1(7): 1076-1085, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34337607

RESUMO

Although it is well-known that limited local mutations of enzymes, such as matrix metalloproteinases (MMPs), may change enzyme activity by orders of magnitude as well as its stability, the completely rational design of proteins is still challenging. These local changes alter the electrostatic potential and thus local electrostatic fields, which impacts the dynamics of water molecules close the protein surface. Here we show by a combined computational design, experimental, and molecular dynamics (MD) study that local mutations have not only a local but also a global effect on the solvent: In the specific case of the matrix metalloprotease MMP14, we found that the nature of local mutations, coupled with surface morphology, have the ability to influence large patches of the water hydrogen-bonding network at the protein surface, which is correlated with stability. The solvent contribution can be experimentally probed via terahertz (THz) spectroscopy, thus opening the door to the exciting perspective of rational protein design in which a systematic tuning of hydration water properties allows manipulation of protein stability and enzymatic activity.

15.
J Phys Chem B ; 124(24): 4989-5001, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32450043

RESUMO

Tracking the excitation of water molecules in the homogeneous liquid is challenging due to the ultrafast dissipation of rotational excitation energy through the hydrogen-bonded network. Here we demonstrate strong transient anisotropy of liquid water through librational excitation using single-color pump-probe experiments at 12.3 THz. We deduce a third-order response of χ3 exceeding previously reported values in the optical range by 3 orders of magnitude. Using a theory that replaces the nonlinear response with a material property amenable to molecular dynamics simulation, we show that the rotationally damped motion of water molecules in the librational band is resonantly driven at this frequency, which could explain the enhancement of the anisotropy in the liquid by the external terahertz field. By addition of salt (MgSO4), the hydration water is instead dominated by the local electric field of the ions, resulting in reduction of water molecules that can be dynamically perturbed by THz pulses.

16.
Chem Phys Lipids ; 208: 1-9, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807615

RESUMO

The outermost layer of skin, the stratum corneum (SC), contains a complex mixture of lipids, which controls the rate of cutaneous water loss (CWL) in reptiles, mammals, and birds. However, the molecular structure of SC lipids and how molecular configurations influence CWL is poorly understood. Here, the organization and structure of SC lipids extracted from birds were investigated by means of Langmuir films. Properties of lipids from the SC of arid and semi-arid adapted larks, known to have a low CWL, were compared with lipids extracted from the SC of mesic lark species with higher CWL to gain insight into how structure impacts CWL. Film properties were probed with surface pressure-area isotherms, Brewster angle microscopy (BAM), and vibrational sum frequency generation (VSFG). Results indicate organization and ordering of SC lipids in the arid-adapted hoopoe lark was vastly different from all other species, forming a miscible, rigid monolayer, whereas monolayers from semi-arid and mesic species were immiscible and disordered. Probing of interfacial water structure reveals that film morphology determines organization of water molecules near the monolayer; monolayers with a porous morphology had an increased population of water molecules that are weakly hydrogen-bonded. In general, CWL appears related to the miscibility and ordering of lipid components within the SC, as well as the ability of these lipids to interact with water molecules. From a broader perspective, CWL in larks appears linked to both the SC lipid composition and the aridity of the species' environment.


Assuntos
Epiderme/metabolismo , Microscopia , Passeriformes , Vibração , Animais , Epiderme/química , Metabolismo dos Lipídeos , Lipídeos/química , Propriedades de Superfície , Água/metabolismo
17.
J Colloid Interface Sci ; 478: 353-64, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27322949

RESUMO

The effect of highly concentrated salt solutions of marine-relevant cations (Na(+), K(+), Mg(2+), and Ca(2+)) on Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), and infrared reflection-absorption spectroscopy (IRRAS). It was found that monovalent cations and Mg(2+) have similar phase behavior, causing DPPC monolayers to expand, while Ca(2+) induces condensation. All cations disrupted the surface morphology at high cation concentration, resulting in decreased reflectivity from the monolayer. Monolayer refractive index was calculated from BAM image intensity in the liquid condensed phase and decreased with increasing cation concentration, which suggests that orientation of the alkyl chains change. Monovalent ions increase ordering of the alkyl chains, more than divalents, yet have little interaction with the DPPC headgroup. Mg(2+) induces gauche defects in the alkyl chain and increases headgroup hydration at low lipid coverage but increases chain ordering and dehydrates the headgroup at high lipid coverage. Ca(2+) orders alkyl chains and dehydrates the phosphate moiety, independent of lipid phase. At the highest salt concentration investigated, significant narrowing of the asymmetric PO2(-) vibrational mode occurs and is attributed to considerable dehydration of the DPPC headgroup.

18.
J Phys Chem B ; 120(8): 2043-52, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26761608

RESUMO

The presence and exchange of electrical charges on the surfaces of marine aerosols influence their ability to act as cloud condensation nuclei and play a role in thundercloud electrification. Although interactions exist between surface-active inorganic ions and organic compounds, their role in surface charging of marine aerosols is not well understood. In this study, the surface potential of dipalmitoylphosphatidylcholine (DPPC) monolayers, a zwitterionic phospholipid found in the sea surface microlayer, is measured on concentrated (0.3-2.0 M) chloride salt solutions containing marine-relevant cations (Na(+), K(+), Mg(2+), Ca(2+)) to model and elucidate the electrical properties of organic-covered marine aerosols. Monovalent cations show only a weak effect on the surface potential of DPPC monolayers in the condensed phase compared to water. In contrast, Mg(2+) and Ca(2+) increase the surface potential, indicating different cation binding modes and affinities for the PC headgroup. Moreover, it is found that for divalent chloride salt solutions, the PC headgroup and interfacial water molecules make the largest dipolar contribution to the surface potential. This study shows that for equal charge concentrations, divalent cations impact surface potential of DPPC monolayers more strongly than monovalents likely through changes in the PC headgroup orientation induced by their complexation along with the lesser ordering of interfacial water molecules caused by phosphate group charge screening.

19.
J Phys Chem B ; 119(29): 9038-48, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25549016

RESUMO

The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Ar , Fenilalanina/química , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Deutério/química , Microscopia , Simulação de Dinâmica Molecular , Estrutura Molecular , Propriedades de Superfície
20.
J Phys Chem B ; 118(28): 8433-40, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24798506

RESUMO

The influence of monovalent cations on the interfacial water organization of alkali (LiCl, NaCl, and KCl) and ammonium chloride (NH4Cl) salt solutions was investigated using surface-sensitive conventional vibrational sum frequency generation (VSFG) and heterodyne-detected (HD-)VSFG spectroscopy. It was found in the conventional VSFG spectra that LiCl and NH4Cl significantly perturb water's hydrogen-bonding network. In contrast, NaCl and KCl had little effect on the interfacial water structure and exhibited weak concentration dependency. The Im χs(2)(ωIR) spectra from HD-VSFG further revealed that, for all chloride solutions, the net transition dipole moments of hydrogen-bonded water molecules (O → H) are oriented more toward the vapor phase relative to neat water. This suggests the presence of an interfacial electric field generated from the formation of an ionic double layer in the interfacial region with a distribution of Cl(-) ions located above the countercations, in agreement with predictions from MD simulations. The magnitude of this electric field shows a small but definite cation specificity and follows the order Li(+) ≈ Na(+) > NH4(+) > K(+). The observed trend was found to be in good agreement with previously published surface potential data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA