Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Neurosurg ; 140(6): 1584-1590, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157534

RESUMO

OBJECTIVE: Recovery of abducens nerve palsy (ANP) after endoscopic endonasal skull base surgery (ESBS) has been shown to be potentially predicted by postoperative ophthalmological examination. Triggered electromyography (t-EMG) and free-run electromyography (f-EMG) activity provide an intraoperative assessment of abducens nerve function, but associations with long-term ANP outcomes have not been explored. The objective of this study was to describe intraoperative abducens EMG characteristics and determine whether these electrophysiological profiles are associated with immediately postoperative and long-term ANP outcomes after ESBS. METHODS: The authors conducted a 5-year (2011-2016) retrospective case-control study of patients who underwent ESBS in whom the abducens nerve was stimulated (t-EMG). Electrophysiological metrics were compared between patients with a new postoperative ANP (cases) and those without ANP (controls). Pathologies included chordoma, pituitary adenoma, meningioma, cholesterol granuloma, and chondrosarcoma. Electrophysiological data included the presence of abnormal f-EMG activity, t-EMG stimulation voltage, stimulation threshold, evoked compound muscle action potential (CMAP) amplitude, onset latency, peak latency, and CMAP duration at various stages of the dissection. Controls were selected such that pathologies were similarly distributed between cases and controls. RESULTS: Fifty-six patients were included, 26 with new postoperative ANP and 30 controls without ANP. Abnormal f-EMG activity (28.0% vs 3.3%, p = 0.02) and lack of response to stimulation (27% vs 0%, p = 0.006) were more frequent in patients with immediately postoperative ANP than in controls. Patients with immediately postoperative ANP also had a lower median CMAP amplitude (35.0 vs 71.2 µV, p = 0.02) and longer onset latency (5.2 vs 2.8 msec, p = 0.04). Comparing patients with transient versus persistent ANP on follow-up, those with persistent ANP tended to have a lower CMAP amplitude (12.8 vs 57 µV, p = 0.07) and higher likelihood of not responding to stimulation at the end of the case (45.5% vs 7.1%, p = 0.06). Abnormal f-EMG was not associated with long-term ANP outcomes. CONCLUSIONS: The presence of f-EMG activity, lack of CMAP response to stimulation, decreased CMAP amplitude, and increased CMAP onset latency were associated with immediately postoperative ANP. Long-term ANP outcomes may be associated with t-EMG parameters, including whether the nerve is able to be stimulated once identified and CMAP amplitude. Future prospective studies may be designed to standardize abducens nerve electrophysiological monitoring protocols to further refine operative and prognostic utility.


Assuntos
Doenças do Nervo Abducente , Eletromiografia , Complicações Pós-Operatórias , Base do Crânio , Humanos , Estudos Retrospectivos , Masculino , Doenças do Nervo Abducente/etiologia , Doenças do Nervo Abducente/fisiopatologia , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto , Idoso , Base do Crânio/cirurgia , Complicações Pós-Operatórias/etiologia , Neoplasias da Base do Crânio/cirurgia
2.
J Neurosurg ; 139(3): 864-872, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840739

RESUMO

OBJECTIVE: A reluctance to monitor extraocular cranial nerve (EOCN) function has restricted skull base surgery worldwide. Spontaneous and triggered electromyography (EMG) monitoring can be recorded intraoperatively to identify and assess potential cranial nerve injury. Determining the conductive function of EOCNs requires the collection of clear, reliable, and repeatable compound muscle action potentials (CMAPs) secondary to stimulation. EOCN EMG needle electrodes can, although infrequently, cause ocular morbidity including hematoma, edema, and scleral laceration. The aim of this study was to ascertain if minimally invasive 7-mm superficial needle electrodes would record CMAPs as well as standard 13-mm intraorbital electrodes. METHODS: Conventionally, the authors have monitored EOCN function with intraorbital placement of paired 13-mm needle electrodes into three extraocular muscles: medial rectus, superior oblique, and lateral rectus. A prospective case-control study was performed using shorter (7-mm) needle electrodes. A single minimally invasive electrode was placed superficially near each extraocular muscle and coupled with a common reference. CMAPs were recorded from the minimally invasive electrodes and compared with CMAPs recorded from the paired intraorbital electrodes. The presence or absence of CMAPs was analyzed and compared among EMG recording techniques. RESULTS: A total of 429 CMAPs were analyzed from 71 EOCNs in 25 patients. The experimental setup yielded 167 true-positive (39%), 106 false-positive (25%), 17 false-negative (4%), and 139 true-negative (32%) responses. These values were used to calculate the sensitivity (91%), specificity (57%), positive predictive value (61%), and negative predictive value (89%). EOCN electrodes were placed in 82 total eyes in 58 patients (CMAPs were obtained in 25 patients). Twenty-six eyes showed some degree of edema, bruising, or bleeding, which was transient and self-resolving. Three eyes in different patients had complications from needle placement or extraction including conjunctival hemorrhage, periorbital ecchymosis, and corneal abrasion, ptosis, and upper eyelid edema. CONCLUSIONS: Because of artifact contamination, 106 false-positive responses (25%), and 17 false-negative responses (4%), the minimally invasive EMG technique cannot reliably record CMAP responses intraoperatively as well as the intraorbital technique. Less-invasive techniques can lead to an inaccurate EOCN assessment and potential postoperative morbidity. EOCN palsies can be debilitating and lifelong; therefore, the benefits of preserving EOCN function outweigh the potential risks of morbidity from electrode placement. EMG monitoring with intraorbital electrodes remains the most reliable method of intraoperative EOCN assessment.


Assuntos
Nervos Cranianos , Músculos Oculomotores , Humanos , Eletromiografia/métodos , Estudos de Casos e Controles , Eletrodos , Músculos Oculomotores/cirurgia , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia
3.
medRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945514

RESUMO

Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output. To test this hypothesis, we identified optimal thalamic targets and stimulation parameters that enhanced upper-limb motor evoked potentials and grip forces in anesthetized monkeys. This potentiation persisted after white matter lesions. We replicated these results in humans during intra-operative testing. We then designed a stimulation protocol that immediately improved voluntary grip force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA