Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(7): 1145-1160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100880

RESUMO

Grain weight (GW) is the most important stable trait that directly contributes to crop yield in case of cereals. A total of 105 backcross introgression lines (BC2F10 BILs) derived from Swarna/O. nivara IRGC81848 (NPS) and 90 BILs from Swarna/O. nivara IRGC81832 (NPK) were evaluated for thousand-grain weight (TGW) across four years (wet seasons 2014, 2015, 2016 and 2018) and chromosome segment substitution lines (CSSLs) were selected. From significant pair- wise mean comparison with Swarna, a total of 77 positively and 29 negatively significant NPS lines and 62 positively and 29 negatively significant NPK lines were identified. In all 4 years, 14 NPS lines and 9 NPK lines were positively significant and one-line NPS69 (IET22161) was negatively significant for TGW over Swarna consistently. NPS lines and NPK lines were genotyped using 111 and 140 polymorphic SSRs respectively. Quantitative trait locus (QTL) mapping using ICIM v4.2 software showed 13 QTLs for TGW in NPS. Three major effect QTLs qTGW2.1, qTGW8.1 and qTGW11.1 were identified in NPS for two or more years with PVE ranging from 8 to 14%. Likewise, 10 QTLs were identified in NPK and including two major effect QTL qTGW3.1 and qTGW12.1 with 6 to 32% PVE. In all QTLs, O. nivara alleles increased TGW. These consistent QTLs are very suitable for fine mapping and functional analysis of grain weight. Further in this study, CSSLs NPS1 (10-2S) and NPK61 (158 K) with significantly higher grain weight than the recurrent parent, Swarna cv. Oryza sativa were selected from each population and secondary F2 mapping populations were developed. Using Bulked Segregant QTL sequencing, a grain weight QTL, designated as qTGW3.1 was fine mapped from the cross between NPK61 and Swarna. This QTL explained 48% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 31 kb interval using recombinant analysis. GRAS transcription factor gene (OS03go103400) involved in plant growth and development located at this genomic locus might be the candidate gene for qTGW3.1. The results of this study will help in further functional studies and improving the knowledge related to the molecular mechanism of grain weight in Oryza and lays a solid foundation for the breeding for high yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01483-0.

2.
Planta ; 256(4): 71, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070104

RESUMO

MAIN CONCLUSION: Identification of trait enhancing QTLs for yield and photosynthesis-related traits in rice using interspecific mapping population and chromosome segment substitution lines derived from a cross between Oryza sativa and Oryza rufipogon. Wild rice contains novel genes which can help in improving rice yield. Common wild rice Oryza rufipogon is a known source for enhanced photosynthesis and yield-related traits. We developed BC2F2:3:4 mapping populations using O. rufipogon IC309814 with high photosynthetic rate as donor, and elite cultivar MTU1010 as recurrent parent. Evaluation of 238 BC2F2 families for 13 yield-related traits and 208 BC2F2 families for seven photosynthesis-related physiological traits resulted in identification of significantly different lines which performed better than MTU1010 for various yield contributing traits. 49 QTLs were identified for 13 yield traits and 7 QTLs for photosynthesis-related traits in BC2F2. In addition, 34 QTLs in BC2F3 and 26 QTLs in BC2F4 were also detected for yield traits.11 common QTLs were identified in three consecutive generations and their trait-increasing alleles were derived from O. rufipogon. Significantly, one major effect common QTL qTGW3.1 for thousand grain weight with average phenotypic variance 8.1% and one novel QTL qBM7.1 for biomass were identified. Photosynthesis-related QTLs qPN9.1, qPN12.1, qPN12.2 qSPAD1.1 and qSPAD6.1 showed additive effect from O. rufipogon. A set of 145 CSSLs were identified in BC2F2 which together represented 87% of O. rufipogon genome. In addition, 87 of the 145 CSSLs were significantly different than MTU1010 for at least one trait. The major effect QTLs can be fine mapped for gene discovery. CSSLs developed in this study are a good source of novel alleles from O. rufipogon in the background of Cottondora Sannalu for rapid improvement of any trait in rice.


Assuntos
Oryza , Cruzamentos Genéticos , Oryza/genética , Fenótipo , Fotossíntese/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA