Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(7): 1464-1474, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589957

RESUMO

Exercise provides a robust physiological stimulus that evokes cross-talk among multiple tissues that when repeated regularly (i.e., training) improves physiological capacity, benefits numerous organ systems, and decreases the risk for premature mortality. However, a gap remains in identifying the detailed molecular signals induced by exercise that benefits health and prevents disease. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to address this gap and generate a molecular map of exercise. Preclinical and clinical studies will examine the systemic effects of endurance and resistance exercise across a range of ages and fitness levels by molecular probing of multiple tissues before and after acute and chronic exercise. From this multi-omic and bioinformatic analysis, a molecular map of exercise will be established. Altogether, MoTrPAC will provide a public database that is expected to enhance our understanding of the health benefits of exercise and to provide insight into how physical activity mitigates disease.


Assuntos
Exercício Físico/fisiologia , Resistência Física/fisiologia , Adolescente , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Projetos de Pesquisa , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489262

RESUMO

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Assuntos
Displasia Broncopulmonar , Pré-Escolar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/patologia , Imuno-Histoquímica , Proteoma , Proteômica , Pulmão/metabolismo
4.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752721

RESUMO

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteômica
5.
Bioinformatics ; 37(22): 4202-4208, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34132786

RESUMO

MOTIVATION: Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. RESULTS: Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240 311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from 'conservative' to 'eXtremely Conservative' resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by ∼24% on average (up to ∼42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem. AVAILABILITY AND IMPLEMENTATION: The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Vírus , Animais , Proteínas Virais , Software , Metagenômica/métodos
6.
PLoS Comput Biol ; 15(9): e1007241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527878

RESUMO

High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different-omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Algoritmos , Bases de Dados Genéticas , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/genética , Neoplasias/metabolismo
7.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008056

RESUMO

Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum 'Florida Lanai'), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato's response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato's local and systemic response to whitefly feeding and ToMoV infection.


Assuntos
Begomovirus/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Animais , Begomovirus/genética , Hemípteros/genética , Hemípteros/virologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/classificação , Proteômica
8.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586033

RESUMO

Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.


Assuntos
Adaptação Fisiológica , Exsudatos e Transudatos/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Estresse Fisiológico , Secas , Solanum lycopersicum/crescimento & desenvolvimento , Transdução de Sinais
9.
Anal Chem ; 91(20): 13119-13127, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509397

RESUMO

Effective extension of mass spectrometry-based proteomics to single cells remains challenging. Herein we combined microfluidic nanodroplet technology with tandem mass tag (TMT) isobaric labeling to significantly improve analysis throughput and proteome coverage for single mammalian cells. Isobaric labeling facilitated multiplex analysis of single cell-sized protein quantities to a depth of ∼1 600 proteins with a median CV of 10.9% and correlation coefficient of 0.98. To demonstrate in-depth high throughput single cell analysis, the platform was applied to measure protein expression in 72 single cells from three murine cell populations (epithelial, immune, and endothelial cells) in <2 days instrument time with over 2 300 proteins identified. Principal component analysis grouped the single cells into three distinct populations based on protein expression with each population characterized by well-known cell-type specific markers. Our platform enables high throughput and unbiased characterization of single cell heterogeneity at the proteome level.


Assuntos
Proteoma/análise , Proteômica/métodos , Análise de Célula Única/métodos , Animais , Cromatografia Líquida , Marcação por Isótopo , Camundongos , Microfluídica , Análise de Componente Principal , Proteoma/química , Espectrometria de Massas em Tandem/métodos
10.
Analyst ; 144(3): 794-807, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30507980

RESUMO

Mass-spectrometry based omics technologies - namely proteomics, metabolomics and lipidomics - have enabled the molecular level systems biology investigation of organisms in unprecedented detail. There has been increasing interest for gaining a thorough, functional understanding of the biological consequences associated with cellular heterogeneity in a wide variety of research areas such as developmental biology, precision medicine, cancer research and microbiome science. Recent advances in mass spectrometry (MS) instrumentation and sample handling strategies are quickly making comprehensive omics analyses of single cells feasible, but key breakthroughs are still required to push through remaining bottlenecks. In this review, we discuss the challenges faced by single cell MS-based omics analyses and highlight recent technological advances that collectively can contribute to comprehensive and high throughput omics analyses in single cells. We provide a vision of the potential of integrating pioneering technologies such as Structures for Lossless Ion Manipulations (SLIM) for improved sensitivity and resolution, novel peptide identification tactics and standards free metabolomics approaches for future applications in single cell analysis.


Assuntos
Genômica/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Humanos , Medicina de Precisão , Biologia de Sistemas
11.
J Proteome Res ; 17(11): 3914-3922, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30300549

RESUMO

Human tissues are known to exhibit interindividual variability, but a deeper understanding of the different factors affecting protein expression is necessary to further apply this knowledge. Our goal was to explore the proteomic variability between individuals as well as between healthy and diseased samples, and to test the efficacy of machine learning classifiers. In order to investigate whether disparate proteomics data sets may be combined, we performed a retrospective analysis of proteomics data from 9 different human tissues. These data sets represent several different sample prep methods, mass spectrometry instruments, and tissue health. Using these data, we examined interindividual and intertissue variability in peptide expression, and analyzed the methods required to build accurate tissue classifiers. We also evaluated the limits of tissue classification by downsampling the peptide data to simulate situations where less data is available, such as clinical biopsies, laser capture microdissection or potentially single-cell proteomics. Our findings reveal the strong potential for utilizing proteomics data to build robust tissue classifiers, which has many prospective clinical applications for evaluating the applicability of model clinical systems.


Assuntos
Variação Biológica Individual , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Peptídeos/química , Proteínas/genética , Proteômica/métodos , Sequência de Aminoácidos , Biópsia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Fígado/química , Aprendizado de Máquina , Masculino , Monócitos/química , Especificidade de Órgãos , Ovário/química , Pâncreas/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Proteínas/metabolismo , Estudos Retrospectivos , Análise de Célula Única , Substância Negra/química , Lobo Temporal/química
12.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483291

RESUMO

Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.


Assuntos
Asparagina/metabolismo , Frutose/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/metabolismo , Salmonelose Animal/imunologia , Salmonelose Animal/metabolismo , Salmonella enterica/imunologia , Salmonella enterica/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Salmonelose Animal/patologia , Salmonella enterica/patogenicidade
13.
PLoS Genet ; 11(9): e1005472, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26367458

RESUMO

Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.


Assuntos
DNA de Cadeia Simples/genética , Intestinos/microbiologia , Anaerobiose , Animais , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Camundongos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
14.
J Infect Dis ; 215(1): 80-87, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077586

RESUMO

Innovative approaches to the use of existing antibiotics is an important strategy in efforts to address the escalating antimicrobial resistance crisis. We report a new approach to the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections by demonstrating that oxacillin can be used to significantly attenuate the virulence of MRSA despite the pathogen being resistant to this drug. Using mechanistic in vitro assays and in vivo models of invasive pneumonia and sepsis, we show that oxacillin-treated MRSA strains are significantly attenuated in virulence. This effect is based primarily on the oxacillin-dependent repression of the accessory gene regulator quorum-sensing system and altered cell wall architecture, which in turn lead to increased susceptibility to host killing of MRSA. Our data indicate that ß-lactam antibiotics should be included in the treatment regimen as an adjunct antivirulence therapy for patients with MRSA infections. This would represent an important change to current clinical practice for treatment of MRSA infection, with the potential to significantly improve patient outcomes in a safe, cost-effective manner.


Assuntos
Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxacilina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Estafilocócica/microbiologia , Percepção de Quorum/genética , Sepse/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Virulência/efeitos dos fármacos
15.
Expert Rev Proteomics ; 13(6): 579-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27133506

RESUMO

INTRODUCTION: Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis. Identification and quantification of host and viral proteins and modifications in cells and extracellular fluids during infection provides useful information about pathogenesis, and will be critical for directing clinical interventions and diagnostics. AREAS COVERED: Herein we review and discuss a broad range of global proteomic studies conducted during viral infection, including those of cellular responses, protein modifications, virion packaging, and serum proteomics. We focus on viruses that impact human health and focus on experimental designs that reveal disease processes and surrogate markers. Expert commentary: Global proteomics is an important component of systems-level studies that aim to define how the interaction of humans and viruses leads to disease. Viral-community resource centers and strategies from other fields (e.g., cancer) will facilitate data sharing and platform-integration for systems-level analyses, and should provide recommended standards and assays for experimental designs and validation.


Assuntos
Interações Hospedeiro-Patógeno , Proteômica , Proteínas Virais/metabolismo , Viroses/metabolismo , Vírus/metabolismo , Animais , Humanos , Espectrometria de Massas , Proteínas Virais/análise , Proteínas Virais/fisiologia , Fenômenos Fisiológicos Virais
16.
PLoS Genet ; 9(4): e1003485, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637642

RESUMO

The generation of genome-scale data is becoming more routine, yet the subsequent analysis of omics data remains a significant challenge. Here, an approach that integrates multiple omics datasets with bioinformatics tools was developed that produces a detailed annotation of several microbial genomic features. This methodology was used to characterize the genome of Thermotoga maritima--a phylogenetically deep-branching, hyperthermophilic bacterium. Experimental data were generated for whole-genome resequencing, transcription start site (TSS) determination, transcriptome profiling, and proteome profiling. These datasets, analyzed in combination with bioinformatics tools, served as a basis for the improvement of gene annotation, the elucidation of transcription units (TUs), the identification of putative non-coding RNAs (ncRNAs), and the determination of promoters and ribosome binding sites. This revealed many distinctive properties of the T. maritima genome organization relative to other bacteria. This genome has a high number of genes per TU (3.3), a paucity of putative ncRNAs (12), and few TUs with multiple TSSs (3.7%). Quantitative analysis of promoters and ribosome binding sites showed increased sequence conservation relative to other bacteria. The 5'UTRs follow an atypical bimodal length distribution comprised of "Short" 5'UTRs (11-17 nt) and "Common" 5'UTRs (26-32 nt). Transcriptional regulation is limited by a lack of intergenic space for the majority of TUs. Lastly, a high fraction of annotated genes are expressed independent of growth state and a linear correlation of mRNA/protein is observed (Pearson r = 0.63, p<2.2 × 10(-16) t-test). These distinctive properties are hypothesized to be a reflection of this organism's hyperthermophilic lifestyle and could yield novel insights into the evolutionary trajectory of microbial life on earth.


Assuntos
Perfilação da Expressão Gênica , Thermotoga maritima , Regiões 5' não Traduzidas , Estilo de Vida , Dados de Sequência Molecular , Thermotoga maritima/genética , Sítio de Iniciação de Transcrição
17.
Proc Natl Acad Sci U S A ; 110(25): 10153-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23720318

RESUMO

Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra-high-pressure liquid chromatography mass spectrometry to investigate the comprehensive "intact" proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Enxofre/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Dimerização , Humanos , Espectrometria de Massas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteômica/instrumentação , Salmonella typhimurium/química , Salmonella typhimurium/crescimento & desenvolvimento
18.
J Proteome Res ; 14(8): 3123-35, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26143644

RESUMO

Individuals with type 1 diabetes (T1D) often have higher than normal blood glucose levels, causing advanced glycation end product formation and inflammation and increasing the risk of vascular complications years or decades later. To examine the urinary proteome in juveniles with T1D for signatures indicative of inflammatory consequences of hyperglycemia, we profiled the proteome of 40 T1D patients with an average of 6.3 years after disease onset and normal or elevated HbA1C levels, in comparison with a cohort of 41 healthy siblings. Using shotgun proteomics, 1036 proteins were identified, on average, per experiment, and 50 proteins showed significant abundance differences using a Wilcoxon signed-rank test (FDR q-value ≤ 0.05). Thirteen lysosomal proteins were increased in abundance in the T1D versus control cohort. Fifteen proteins with functional roles in vascular permeability and adhesion were quantitatively changed, including CD166 antigen and angiotensin-converting enzyme 2. α-N-Acetyl-galactosaminidase and α-fucosidase 2, two differentially abundant lysosomal enzymes, were detected in western blots with often elevated quantities in the T1D versus control cohort. Increased release of proteins derived from lysosomes and vascular epithelium into urine may result from hyperglycemia-associated inflammation in the kidney vasculature.


Assuntos
Diabetes Mellitus Tipo 1/urina , Enzimas/urina , Proteoma/metabolismo , Proteômica/métodos , Irmãos , Molécula de Adesão de Leucócito Ativado/metabolismo , Molécula de Adesão de Leucócito Ativado/urina , Adolescente , Enzima de Conversão de Angiotensina 2 , Western Blotting , Criança , Cromatografia Líquida , Estudos de Coortes , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Enzimas/metabolismo , Feminino , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Masculino , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/urina , Espectrometria de Massas em Tandem , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/urina , alfa-N-Acetilgalactosaminidase/metabolismo , alfa-N-Acetilgalactosaminidase/urina
19.
J Proteome Res ; 14(4): 1716-26, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25686268

RESUMO

The alternative sigma factor E (σ(E)) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ(E)-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ(E) may indirectly participate in post-transcriptional regulation. In this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ(E) in Salmonella. Samples were analyzed from wild-type and isogenic rpoE mutant Salmonella cultivated in three different conditions: nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of the observed proteome was regulated by σ(E) combining all three conditions. In different growth conditions, σ(E) affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ(E) and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ(E)-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ(E)-mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Processamento Pós-Transcricional do RNA/genética , Salmonella/genética , Salmonella/metabolismo , Fator sigma/genética , Perfilação da Expressão Gênica/métodos , Immunoblotting , Proteômica/métodos
20.
J Proteome Res ; 14(9): 4029-38, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26147956

RESUMO

Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells. Using this approach, two SseL substrates were identified in the RAW 264.7 murine macrophage-like cell line, S100A6 and heterogeneous nuclear ribonuclear protein K, in addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. This method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.


Assuntos
Proteínas de Bactérias/metabolismo , Proteômica/métodos , Salmonella typhimurium/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/química , Linhagem Celular , Imunoensaio , Espectrometria de Massas , Camundongos , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA