Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L638-L646, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724348

RESUMO

This study aimed to develop a three-dimensional (3-D) method for assessing ventilation/perfusion (V/Q̇) ratios in a pig model of hemodynamic perturbations using electrical impedance tomography (EIT). To evaluate the physiological coherence of changes in EIT-derived V/Q̇ ratios, global EIT-derived V/Q̇ mismatches were compared with global gold standards. The study found regional heterogeneity in the distribution of V/Q̇ ratios in both the ventrodorsal and craniocaudal directions. Although global EIT-derived indices of V/Q̇ mismatch consistently underestimated both low and high V/Q̇ mismatch compared with global gold standards, the direction of the change was similar. We made the software available at no cost for other researchers to use. Future studies should compare regional V/Q̇ ratios determined by our method against other regional, high-resolution methods.NEW & NOTEWORTHY In this study, we introduce a novel 3-D method for assessing ventilation-perfusion (V/Q̇) ratios using electrical impedance tomography (EIT). Heterogeneity in V/Q̇ distribution showcases the significant potential for enhanced understanding of pulmonary conditions. This work signifies a substantial step forward in the application of EIT for monitoring and managing lung diseases.

2.
Am J Respir Crit Care Med ; 204(1): 82-91, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545023

RESUMO

Rationale: The transition to air breathing at birth is a seminal respiratory event common to all humans, but the intrathoracic processes remain poorly understood. Objectives: The objectives of this prospective, observational study were to describe the spatiotemporal gas flow, aeration, and ventilation patterns within the lung in term neonates undergoing successful respiratory transition. Methods: Electrical impedance tomography was used to image intrathoracic volume patterns for every breath until 6 minutes from birth in neonates born by elective cesearean section and not needing resuscitation. Breaths were classified by video data, and measures of lung aeration, tidal flow conditions, and intrathoracic volume distribution calculated for each inflation. Measurements and Main Results: A total of 1,401 breaths from 17 neonates met all eligibility and data analysis criteria. Stable FRC was obtained by median (interquartile range) 43 (21-77) breaths. Breathing patterns changed from predominantly crying (80.9% first min) to tidal breathing (65.3% sixth min). From birth, tidal ventilation was not uniform within the lung, favoring the right and nondependent regions; P < 0.001 versus left and dependent regions (mixed-effects model). Initial crying created a unique volumetric pattern with delayed midexpiratory gas flow associated with intrathoracic volume redistribution (pendelluft flow) within the lung. This preserved FRC, especially within the dorsal and right regions. Conclusions: The commencement of air breathing at birth generates unique flow and volume states associated with marked spatiotemporal ventilation inhomogeneity not seen elsewhere in respiratory physiology. At birth, neonates innately brake expiratory flow to defend FRC gains and redistribute gas to less aerated regions.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Oximetria , Respiração com Pressão Positiva , Respiração , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos , Testes de Função Respiratória , Tomografia Computadorizada por Raios X
3.
Vet Anaesth Analg ; 49(4): 382-389, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641422

RESUMO

OBJECTIVE: To determine changes in distribution of lung ventilation with increasing intra-abdominal pressure (IAP) from carbon dioxide (CO2) insufflation in standing sedated horses. STUDY DESIGN: Prospective experimental study. ANIMALS: A group of six healthy adult horses. METHODS: Each horse was sedated with acepromazine, detomidine and butorphanol and sedation maintained with a detomidine infusion. The horse was restrained in a stocks system and a 32 electrode electrical impedance tomography (EIT) belt was wrapped around the thorax at the fifth-sixth intercostal space. EIT images and arterial blood samples for PaO2 and PaCO2, pH and lactate concentration were obtained during capnoperitoneum at 0 (baseline A), 5, 8 and 12 mmHg as IAP increased and at 8, 5, 0 (baseline B) mmHg as IAP decreased. At each IAP, after a 2 minute stabilization period, EIT images were recorded for ≥ 2 minutes to obtain five consecutive breaths. Statistical analysis was performed using anova for repeated measures with Geisser-Greenhouse correction and a Tukey's multiple comparison test for parametric data. The relationship between PaO2 and the center of ventilation in the ventral-dorsal (CoV-VD) and right-left (CoV-RL) directions or total impedance change as a surrogate for tidal volume (ΔZVT) were tested using linear regression analysis. Significance was assumed when p ≤ 0.05. RESULTS: There were no significant changes in CoV-VD, CoV-RL, PaO2, PaCO2, lactate concentration, pH, heart rate and respiratory rate with targeted IAP. There was a significant decrease in ΔZVT compared with baseline A at 5 mmHg IAP as IAP was increased. CONCLUSIONS AND CLINICAL RELEVANCE: Capnoperitoneum causes a significant decrease in ΔZVT in standing sedated horses with increasing IAP.


Assuntos
Respiração , Tomografia Computadorizada por Raios X , Animais , Impedância Elétrica , Cavalos , Lactatos , Pulmão , Estudos Prospectivos
4.
Vet Anaesth Analg ; 49(6): 645-649, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36064498

RESUMO

OBJECTIVE: To describe some cardiorespiratory effects of an inspiratory-to-expiratory (IE) ratio of 1:1 compared with 1:3 in ventilated horses in dorsal recumbency. STUDY DESIGN: Randomized crossover experimental study. ANIMALS: A total of eight anesthetized horses, with 444 (330-485) kg body weight [median (range)]. METHODS: Horses were ventilated in dorsal recumbency with a tidal volume of 15 mL kg-1 and a respiratory rate of 8 breaths minute-1, and IE ratios of 1:1 (IE1:1) and 1:3 (IE1:3) in random order, each for 25 minutes after applying a recruitment maneuver. Spirometry, arterial blood gases and dobutamine requirements were recorded in all horses during each treatment. Electrical impedance tomography (EIT) data were recorded in four horses and used to generate functional EIT variables including regional ventilation delay index (RVD), a measure of speed of lung inflation, and end-expiratory lung impedance (EELI), an indicator of functional residual capacity (FRC). Results were assessed with linear and generalized linear mixed models. RESULTS: Compared with treatment IE1:3, horses ventilated with treatment IE1:1 had higher mean airway pressures and respiratory system compliance (p < 0.014), while peak, end-inspiratory and driving airway pressures were lower (p < 0.001). No differences in arterial oxygenation or dobutamine requirements were observed. PaCO2 was lower in treatment IE1:1 (p = 0.039). Treatment IE1:1 resulted in lower RVD (p < 0.002) and higher EELI (p = 0.023) than treatment IE1:3. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that IE1:1 improved respiratory system mechanics and alveolar ventilation compared with IE1:3, whereas oxygenation and dobutamine requirements were unchanged, although differences were small. In the four horses where EIT was evaluated, IE1:1 led to a faster inflation rate of the lung, possibly the result of increased FRC. The clinical relevance of these findings needs to be further investigated.


Assuntos
Dobutamina , Respiração com Pressão Positiva , Cavalos , Animais , Volume de Ventilação Pulmonar , Respiração com Pressão Positiva/veterinária , Gasometria/veterinária , Respiração , Impedância Elétrica
5.
BMC Pulm Med ; 21(1): 38, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482796

RESUMO

BACKGROUND: Clinical management of COVID-19 requires close monitoring of lung function. While computed tomography (CT) offers ideal way to identify the phenotypes, it cannot monitor the patient response to therapeutic interventions. We present a case of ventilation management for a COVID-19 patient where electrical impedance tomography (EIT) was used to personalize care. CASE PRESENTATION: The patient developed acute respiratory distress syndrome, required invasive mechanical ventilation, and was subsequently weaned. EIT was used multiple times: to titrate the positive end-expiratory pressure, understand the influence of body position, and guide the support levels during weaning and after extubation. We show how EIT provides bedside monitoring of the patient´s response to various therapeutic interventions and helps guide treatments. CONCLUSION: EIT provides unique information that may help the ventilation management in the pandemic of COVID-19.


Assuntos
COVID-19/diagnóstico por imagem , Impedância Elétrica , Pulmão/diagnóstico por imagem , Posicionamento do Paciente/métodos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Tomografia/métodos , COVID-19/fisiopatologia , COVID-19/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Desmame do Respirador/métodos
6.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L32-L41, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881405

RESUMO

Respiratory transition at birth involves rapidly clearing fetal lung liquid and preventing efflux back into the lung while aeration is established. We have developed a sustained inflation (SIOPT) individualized to volume response and a dynamic tidal positive end-expiratory pressure (PEEP) (open lung volume, OLV) strategy that both enhance this process. We aimed to compare the effect of each with a group managed with PEEP of 8 cmH2O and no recruitment maneuver (No-RM), on gas exchange, lung mechanics, spatiotemporal aeration, and lung injury in 127 ± 1 day preterm lambs. Forty-eight fetal-instrumented lambs exposed to antenatal steroids were ventilated for 60 min after application of the allocated strategy. Spatiotemporal aeration and lung mechanics were measured with electrical impedance tomography and forced-oscillation, respectively. At study completion, molecular and histological markers of lung injury were analyzed. Mean (SD) aeration at the end of the SIOPT and OLV groups was 32 (22) and 38 (15) ml/kg, compared with 17 (10) ml/kg (180 s) in the No-RM (P = 0.024, 1-way ANOVA). This translated into better oxygenation at 60 min (P = 0.047; 2-way ANOVA) resulting from better distal lung tissue aeration in SIOPT and OLV. There was no difference in lung injury. Neither SIOPT nor OLV achieved homogeneous aeration. Histological injury and mRNA biomarker upregulation were more likely in the regions with better initial aeration, suggesting volutrauma. Tidal ventilation or an SI achieves similar aeration if optimized, suggesting that preventing fluid efflux after lung liquid clearance is at least as important as fluid clearance during the initial inflation at birth.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/fisiopatologia , Animais , Animais Recém-Nascidos , Complacência (Medida de Distensibilidade) , Impedância Elétrica , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Oxigênio/metabolismo , Pressão , Respiração , Respiração Artificial , Mecânica Respiratória/fisiologia , Ovinos , Volume de Ventilação Pulmonar
7.
Thorax ; 72(1): 83-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596161

RESUMO

Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.


Assuntos
Impedância Elétrica , Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Tomografia , Adolescente , Adulto , Débito Cardíaco , Criança , Pré-Escolar , Consenso , Humanos , Lactente , Recém-Nascido , Pneumopatias/terapia , Circulação Pulmonar , Respiração Artificial , Terminologia como Assunto , Tomografia/métodos
8.
Pediatr Res ; 82(4): 712-720, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28604757

RESUMO

BackgroundCurrent sustained lung inflation (SI) approaches use uniform pressures and durations. We hypothesized that gestational-age-related mechanical and developmental differences would affect the time required to achieve optimal lung aeration, and resultant lung volumes, during SI delivery at birth in lambs.Methods49 lambs, in five cohorts between 118 and 139 days of gestation (term 142 d), received a standardized 40 cmH2O SI, which was delivered until 10 s after lung volume stability (optimal aeration) was visualized on real-time electrical impedance tomography (EIT), or to a maximum duration of 180 s. Time to stable lung aeration (Tstable) within the whole lung, gravity-dependent, and non-gravity-dependent regions, was determined from EIT recordings.ResultsTstable was inversely related to gestation (P<0.0001, Kruskal-Wallis test), with the median (range) being 229 (85,306) s and 72 (50,162) s in the 118-d and 139-d cohorts, respectively. Lung volume at Tstable increased with gestation from a mean (SD) of 20 (17) ml/kg at 118 d to 56 (13) ml/kg at 139 d (P=0.002, one-way ANOVA). There were no gravity-dependent regional differences in Tstable or aeration.ConclusionsThe trajectory of aeration during an SI at birth is influenced by gestational age in lambs. An understanding of this may assist in developing SI protocols that optimize lung aeration for all infants.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/terapia , Ventilação Pulmonar , Respiração Artificial/métodos , Respiração , Animais , Animais Recém-Nascidos , Impedância Elétrica , Idade Gestacional , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar/métodos , Modelos Biológicos , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/fisiopatologia , Carneiro Doméstico , Fatores de Tempo , Tomografia
9.
Am J Respir Cell Mol Biol ; 54(2): 263-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26186685

RESUMO

Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.


Assuntos
Pulmão/fisiopatologia , Respiração com Pressão Positiva/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Complacência Pulmonar , Medidas de Volume Pulmonar , Pressão , Troca Gasosa Pulmonar , Ventilação Pulmonar , RNA Mensageiro/metabolismo , Mecânica Respiratória , Fatores de Risco , Ovinos , Volume de Ventilação Pulmonar , Fatores de Tempo , Tomografia Computadorizada por Raios X , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico por imagem , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
10.
Crit Care ; 20: 18, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26796635

RESUMO

BACKGROUND: Assessment of pulmonary edema is a key factor in monitoring and guidance of therapy in critically ill patients. To date, methods available at the bedside for estimating the physiologic correlate of pulmonary edema, extravascular lung water, often are unreliable or require invasive measurements. The aim of the present study was to develop a novel approach to reliably assess extravascular lung water by making use of the functional imaging capabilities of electrical impedance tomography. METHODS: Thirty domestic pigs were anesthetized and randomized to three different groups. Group 1 was a sham group with no lung injury. Group 2 had acute lung injury induced by saline lavage. Group 3 had vascular lung injury induced by intravenous injection of oleic acid. A novel, noninvasive technique using changes in thoracic electrical impedance with lateral body rotation was used to measure a new metric, the lung water ratioEIT, which reflects total extravascular lung water. The lung water ratioEIT was compared with postmortem gravimetric lung water analysis and transcardiopulmonary thermodilution measurements. RESULTS: A significant correlation was found between extravascular lung water as measured by postmortem gravimetric analysis and electrical impedance tomography (r = 0.80; p < 0.05). Significant changes after lung injury were found in groups 2 and 3 in extravascular lung water derived from transcardiopulmonary thermodilution as well as in measurements derived by lung water ratioEIT. CONCLUSIONS: Extravascular lung water could be determined noninvasively by assessing characteristic changes observed on electrical impedance tomograms during lateral body rotation. The novel lung water ratioEIT holds promise to become a noninvasive bedside measure of pulmonary edema.


Assuntos
Lesão Pulmonar Aguda/complicações , Impedância Elétrica/uso terapêutico , Edema Pulmonar/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Água Extravascular Pulmonar/fisiologia , Ácido Oleico/efeitos adversos , Distribuição Aleatória , Cloreto de Sódio/efeitos adversos , Suínos
11.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1138-49, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26408555

RESUMO

A sustained first inflation (SI) at birth may aid lung liquid clearance and aeration, but the impact of SI duration relative to the volume-response of the lung is poorly understood. We compared three SI strategies: 1) variable duration defined by attaining volume equilibrium using real-time electrical impedance tomography (EIT; SIplat); 2) 30 s beyond equilibrium (SIlong); 3) short 30-s SI (SI30); and 4) positive pressure ventilation without SI (no-SI) on spatiotemporal aeration and ventilation (EIT), gas exchange, lung mechanics, and regional early markers of injury in preterm lambs. Fifty-nine fetal-instrumented lambs were ventilated for 60 min after applying the allocated first inflation strategy. At study completion molecular and histological markers of lung injury were analyzed. The time to SI volume equilibrium, and resultant volume, were highly variable; mean (SD) 55 (34) s, coefficient of variability 59%. SIplat and SIlong resulted in better lung mechanics, gas exchange and lower ventilator settings than both no-SI and SI30. At 60 min, alveolar-arterial difference in oxygen was a mean (95% confidence interval) 130 (13, 249) higher in SI30 vs. SIlong group (two-way ANOVA). These differences were due to better spatiotemporal aeration and tidal ventilation, although all groups showed redistribution of aeration towards the nondependent lung by 60 min. Histological lung injury scores mirrored spatiotemporal change in aeration and were greatest in SI30 group (P < 0.01, Kruskal-Wallis test). An individualized volume-response approach to SI was effective in optimizing aeration, homogeneous tidal ventilation, and respiratory outcomes, while an inadequate SI duration had no benefit over positive pressure ventilation alone.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Animais Recém-Nascidos , Feminino , Pulmão/patologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva , Gravidez , Nascimento Prematuro , Carneiro Doméstico , Volume de Ventilação Pulmonar
13.
Physiol Meas ; 45(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38422515

RESUMO

Objective. Data from two-plane electrical impedance tomography (EIT) can be reconstructed into various slices of functional lung images, allowing for more complete visualisation and assessment of lung physiology in health and disease. The aim of this study was to confirm the ability of 3D EIT to visualise normal lung anatomy and physiology at rest and during increased ventilation (represented by rebreathing).Approach. Two-plane EIT data, using two electrode planes 20 cm apart, were collected in 20 standing sedate horses at baseline (resting) conditions, and during rebreathing. EIT data were reconstructed into 3D EIT whereby tidal impedance variation (TIV), ventilated area, and right-left and ventral-dorsal centres of ventilation (CoVRLand CoVVD, respectively) were calculated in cranial, middle and caudal slices of lung, from data collected using the two planes of electrodes.Main results. There was a significant interaction of time and slice for TIV (p< 0.0001) with TIV increasing during rebreathing in both caudal and middle slices. The ratio of right to left ventilated area was higher in the cranial slice, in comparison to the caudal slice (p= 0.0002). There were significant effects of time and slice on CoVVDwhereby the cranial slice was more ventrally distributed than the caudal slice (p< 0.0009 for the interaction).Significance. The distribution of ventilation in the three slices corresponds with topographical anatomy of the equine lung. This study confirms that 3D EIT can accurately represent lung anatomy and changes in ventilation distribution during rebreathing in standing sedate horses.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Animais , Cavalos , Volume de Ventilação Pulmonar/fisiologia , Impedância Elétrica , Tomografia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia
14.
Physiol Meas ; 45(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422512

RESUMO

Objective. Since pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases it was suggested as a potential non-invasive surrogate for PAP. The state of tidal lung filling is also known to affect PWTT independently of PAP. The aim of this retrospective analysis was to test whether respiratory gating improved the correlation coefficient between PWTT and PAP.Approach. In each one of five anesthetized and mechanically ventilated pigs two high-fidelity pressure catheters were placed, one directly behind the pulmonary valve, and the second one in a distal branch of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 and animals were ventilated in a pressure controlled mode (I:E ratio 1:2, respiratory rate 12/min, tidal volume of 6 ml kg-1). All signals were recorded using the multi-channel platform PowerLab®. The arrival of the pulse wave at each catheter tip was determined using a MATLAB-based modified hyperbolic tangent algorithm and PWTT calculated as the time interval between these arrivals.Main results. Correlation coefficient for PWTT and mean PAP wasr= 0.932 for thromboxane. This correlation coefficient increased considerably when heart beats either at end-inspiration (r= 0.978) or at end-expiration (r= 0.985) were selected (=respiratory gating).Significance. The estimation of mean PAP from PWTT improved significantly when taking the respiratory cycle into account. Respiratory gating is suggested to improve for the estimation of PAP by PWTT.


Assuntos
Hipertensão Pulmonar , Animais , Suínos , Artéria Pulmonar , Estudos Retrospectivos , Frequência Cardíaca , Análise de Onda de Pulso , Pressão Sanguínea
15.
PLoS One ; 19(4): e0301609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687765

RESUMO

Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.


Assuntos
Leite , Sensibilidade e Especificidade , Tuberculose Bovina , Animais , Bovinos , Leite/imunologia , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Teste Tuberculínico/veterinária , Teste Tuberculínico/métodos , Mycobacterium bovis/imunologia , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/análise
16.
IEEE Trans Biomed Eng ; 70(12): 3501-3512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405892

RESUMO

OBJECTIVE: Acoustoelectric tomography (AET) is a hybrid imaging technique combining ultrasound and electrical impedance tomography (EIT). It exploits the acoustoelectric effect (AAE): an US wave propagating through the medium induces a local change in conductivity, depending on the acoustoelectric properties of the medium. Typically, AET image reconstruction is limited to 2D and most cases employ a large number of surface electrodes. METHODS: This article investigates the detectability of contrasts in AET. We characterize the AEE signal as a function of the medium conductivity and electrode placement, using a novel 3D analytical model of the AET forward problem. The proposed model is compared to a finite element method simulation. RESULTS: In a cylindrical geometry with an inclusion contrast of 5 times the background and two pairs of electrodes, the maximum, minimum, and mean suppression of the AEE signal are 68.5%, 3.12%, and 49.0%, respectively, over a random scan of electrode positions. The proposed model is compared to a finite element method simulation and the minimum mesh sizes required successfully model the signal is estimated. CONCLUSION: We show that the coupling of AAE and EIT leads to a suppressed signal and the magnitude of the reduction is a function of geometry of the medium, contrast and electrode locations. SIGNIFICANCE: This model can aid in the reconstruction of AET images involving a minimum number of electrodes to determine the optimal electrode placement.


Assuntos
Algoritmos , Tomografia , Impedância Elétrica , Tomografia/métodos , Condutividade Elétrica , Simulação por Computador , Eletrodos
17.
Front Physiol ; 14: 1164646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476683

RESUMO

Electrical impedance tomography (EIT) is a non-invasive diagnostic tool for evaluating lung function. The objective of this study was to compare respiratory flow variables calculated from thoracic EIT measurements with corresponding spirometry variables. Ten healthy research horses were sedated and instrumented with spirometry via facemask and a single-plane EIT electrode belt around the thorax. Horses were exposed to sequentially increasing volumes of apparatus dead space between 1,000 and 8,500 mL, in 5-7 steps, to induce carbon dioxide rebreathing, until clinical hyperpnea or a tidal volume of 150% baseline was reached. A 2-min stabilization period followed by 2 minutes of data collection occurred at each timepoint. Peak inspiratory and expiratory flow, inspiratory and expiratory time, and expiratory nadir flow, defined as the lowest expiratory flow between the deceleration of flow of the first passive phase of expiration and the acceleration of flow of the second active phase of expiration were evaluated with EIT and spirometry. Breathing pattern was assessed based on the total impedance curve. Bland-Altman analysis was used to evaluate the agreement where perfect agreement was indicated by a ratio of EIT:spirometry of 1.0. The mean ratio (bias; expressed as a percentage difference from perfect agreement) and the 95% confidence interval of the bias are reported. There was good agreement between EIT-derived and spirometry-derived peak inspiratory [-15% (-46-32)] and expiratory [10% (-32-20)] flows and inspiratory [-6% (-25-18)] and expiratory [5% (-9-20)] times. Agreement for nadir flows was poor [-22% (-87-369)]. Sedated horses intermittently exhibited Cheyne-Stokes variant respiration, and a breath pattern with incomplete expiration in between breaths (crown-like breaths). Electrical impedance tomography can quantify airflow changes over increasing tidal volumes and changing breathing pattern when compared with spirometry in standing sedated horses.

18.
Sci Rep ; 13(1): 1875, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726018

RESUMO

Bovine tuberculosis is a contagious bacterial disease of worldwide economic, zoonotic and welfare importance caused mainly by Mycobacterium bovis infection. Current regulatory diagnostic methods lack sensitivity and require improvement. We have developed a multiplex serological test for bovine tuberculosis and here we provide an estimate of the diagnostic accuracy of the test in cattle. Positive and negative reference serum samples were obtained from animals from Europe and the United States of America. The diagnostic specificity estimate was 98.4% and 99.7% using high sensitivity and high specificity settings of the test respectively. Tuberculin boosting did not affect the overall specificity estimate. The diagnostic sensitivity in samples from Mycobacterium bovis culture positive animals following tuberculin boosting was 93.9%.The relative sensitivity following boosting in tuberculin test positive, lesion positive animals and interferon gamma test positive, lesion positive animals was 97.2% and 96.9% respectively. In tuberculin test negative, lesion positive animals and in interferon gamma test negative, lesion positive animals, the relative sensitivity following tuberculin boosting was 88.2% and 83.6% respectively. The results show that the test has high diagnostic sensitivity and specificity and can detect infected animals that are missed by tuberculin and interferon gamma testing.


Assuntos
Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Tuberculina , Interferon gama , Teste Tuberculínico/veterinária , Teste Tuberculínico/métodos , Sensibilidade e Especificidade
19.
Am J Vet Res ; : 1-8, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113642

RESUMO

OBJECTIVE: To investigate the mechanisms underlying the improved arterial oxygenation described with flow-limited expiration (FLEX) ventilation in anesthetized horses. ANIMALS: 5 healthy adult research horses. METHODS: Horses underwent volume-controlled ventilation for 60 minutes (VCV1), followed by 60 minutes of FLEX, and 30 minutes of VCV (VCV2). Main outcomes included the arterial partial pressure of oxygen-to-Fio2 (PF) ratio and electrical impedance tomography (EIT)-derived functional indices at the end of each phase. The EIT data were used to create regional maps of relative lung ventilation and perfusion as well as regional maps of ventilation/perfusion (V/Q) ratios. Ventilation indices derived from EIT included the fraction of expired volume in 1 second (FEV1; %) and the time it took for the EIT signal to drop to 50% of the peak signal at end-inspiration (TClose50; seconds). Data were analyzed with 2-way ANOVA for repeated measures. P < .05 was considered significant. RESULTS: The PF ratio increased significantly with FLEX compared to both VCV1 and VCV2 (P < .01). There were no differences in the relative distribution of ventilation nor perfusion between ventilation strategies. However, when ventilation and perfusion were superimposed and V/Q ratio maps were constructed, FLEX had a homogenizing effect toward values of 1.0. The FEV1 was shorter (P < .01) and the TClose50 was longer (P < .001) in all regions during FLEX compared to both VCV1 and VCV2. CLINICAL RELEVANCE: Our findings suggest that FLEX ventilation in anesthetized horses enhances regional V/Q matching, likely by prolonging expiratory aeration and reducing airway closure.

20.
Biomedicines ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672690

RESUMO

Pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases and was therefore suggested as a surrogate parameter for PAP. The aim of this analysis was to reveal patterns and potential mechanisms of ventilation-induced periodic changes in PWTT under resting conditions. To measure both PWTT and PAP in five healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature: one with the tip placed in the pulmonary artery trunk, and a second one placed in a distal segment of the pulmonary artery. Animals received pressure-controlled mechanical ventilation. Ventilation-dependent changes were seen in both variables, PWTT and mean PAP; however, changes in PWTT were not synchronous with changes in PAP. Thus, plotting the value of PWTT for each heartbeat over the respective PAP revealed a characteristic hysteresis. At the beginning of inspiration, PAP rose while PWTT remained constant. During further inspiration, PWTT started to decrease rapidly as mPAP was about to reach its plateau. The same time course was observed during expiration: while mPAP approached its minimum, PWTT increased rapidly. During apnea this hysteresis disappeared. Thus, non-synchronous ventilation-induced changes in PWTT and PAP were found with inspiration causing a significant shortening of PWTT. Therefore, it is suggested that the respiratory cycle should be considered when using PWTT as a surrogate for PAP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA