Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BJU Int ; 131(3): 367-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181708

RESUMO

OBJECTIVES: To investigate global changes in ureters at the transcriptional, translational and functional levels, both while stents are indwelling and after removal and recovery, and to study the effects of targeting pathways that play a potential role. METHODS: Pig ureters were stented for varying amounts of time (48 h, 72 h, 14 days) and the impact on peristalsis, dilatation and hydronephrosis were assessed. RNAseq, proteomic, histological and smooth muscle (SM) function analyses were performed on ureteric and kidney tissues to assess changes induced by stenting and recovery. Pathway analysis was performed using Ingenuity Pathway Analysis software. To study the impact of possible interventions, the effects of erythropoeitin (EPO) and a Gli1 inhibitor were assessed. RESULTS: Stenting triggers massive ureteric dilatation, aperistalsis and moderate hydronephrosis within 48 h. Pathways associated with obstruction, fibrosis and kidney injury were upregulated by stenting. Increased expression of GLI1, clusterin-α (a kidney injury marker) and collagen 4A2 (a fibrosis marker) was found in stented vs contralateral unstented ureters. EPO did not improve peristalsis or contraction force but did decrease non-purposeful spasming seen exclusively in stented ureters. Tamsulosin administration increased contractility but not rate of peristalsis in stented ureters. CONCLUSIONS: Ureters respond to stents similarly to how they respond to an obstruction, that is, with activation of pathways associated with hydronephrosis, fibrosis and kidney injury. This is driven by significant dilatation and associated ureteric SM dysfunction. EPO and tamsulosin induced mild favourable changes in SM physiology, suggesting that targeting specific pathways has potential to address stent-induced complications.


Assuntos
Hidronefrose , Ureter , Obstrução Ureteral , Animais , Suínos , Proteína GLI1 em Dedos de Zinco , Proteômica , Tansulosina , Ureter/patologia , Hidronefrose/etiologia , Stents/efeitos adversos
2.
Nucleic Acids Res ; 48(12): 6855-6873, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32406909

RESUMO

Cells limit energy-consuming mRNA translation during stress to maintain metabolic homeostasis. Sequestration of mRNAs by RNA binding proteins (RBPs) into RNA granules reduces their translation, but it remains unclear whether RBPs also function in partitioning of specific transcripts to polysomes (PSs) to guide selective translation and stress adaptation in cancer. To study transcript partitioning under cell stress, we catalogued mRNAs enriched in prostate carcinoma PC-3 cell PSs, as defined by polysome fractionation and RNA sequencing (RNAseq), and compared them to mRNAs complexed with the known SG-nucleator protein, G3BP1, as defined by spatially-restricted enzymatic tagging and RNAseq. By comparing these compartments before and after short-term arsenite-induced oxidative stress, we identified three major categories of transcripts, namely those that were G3BP1-associated and PS-depleted, G3BP1-dissociated and PS-enriched, and G3BP1-associated but also PS-enriched. Oxidative stress profoundly altered the partitioning of transcripts between these compartments. Under arsenite stress, G3BP1-associated and PS-depleted transcripts correlated with reduced expression of encoded mitochondrial proteins, PS-enriched transcripts that disassociated from G3BP1 encoded cell cycle and cytoprotective proteins whose expression increased, while transcripts that were both G3BP1-associated and PS-enriched encoded proteins involved in diverse stress response pathways. Therefore, G3BP1 guides transcript partitioning to reprogram mRNA translation and support stress adaptation.


Assuntos
DNA Helicases/genética , Estresse Oxidativo/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , Arsenitos/toxicidade , Carcinoma/genética , Carcinoma/metabolismo , Grânulos Citoplasmáticos/genética , Metabolismo Energético/genética , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/genética
3.
Prostate ; 81(6): 309-317, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503318

RESUMO

BACKGROUND: Castration resistant prostate cancer progression is associated with an acquired intratumoral androgen synthesis. Signaling pathways that can upregulate androgen production in prostate tumor microenvironment are not entirely known. In this study, we investigate the potential effect of a secreted signaling protein named semaphorin 3C (SEMA3C) on steroidogenic activities of prostatic stromal cells. METHODS: We treated human primary prostate stromal cells (PrSC) with 1uM recombinant SEMA3C protein and androgen precursor named dehydroepiandrosterone (DHEA) 1.7uM. Also, to test SEMA3C's effect on the conversion of DHEA to androgens, we exposed PrSCs to the conditioned media derived from LNCaP cells that were transduced with a lentiviral vector harboring full length SEMA3C gene or empty vector (CM-LNSEMA3C or CM-LNVector ). Then, liquid chromatography-mass spectrometry was performed on steroids isolated from PrSCs media. The messnger RNA expression of steroidogenic enzymes in PrSCs was quantified by quantitative polymerase chain reaction. RESULTS: Recombinant SEMA3C had no effect on steroidogenic activities in PrSCs. However, key steroidogenic enzymes expression and androgen synthesis were upregulated in PrSCs treated with CM-LNSEMA3C , compared to those treated with CM-LNVector . These results suggest that steroidogenic activities in PrSCs were upregulated in response to a signaling factor in CM-LNSEMA3C , other than SEMA3C. We hypothesized that SEMA3C overexpression in LNCaP cells affected androgen synthesis in PrSCs through sonic hedgehog (Shh) pathway activation in PrSCs. We verified this effect by blocking Shh signaling with smoothened antagonist. CONCLUSION: Based on known ability of Shh signaling pathway to activate steroidogenesis in stromal cells, we suggest that SEMA3C overexpression in LNCaP cells can upregulate Shh which in turn is able to stimulate steroidogenic activities in prostatic stromal cells.


Assuntos
Androgênios/biossíntese , Proteínas Hedgehog/metabolismo , Próstata/metabolismo , Semaforinas/metabolismo , Células Estromais/metabolismo , Desidroepiandrosterona/metabolismo , Humanos , Masculino , Comunicação Parácrina , Próstata/citologia , Semaforinas/genética , Regulação para Cima
4.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418978

RESUMO

The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC. Currently, there is very limited information available on human prostate tissue steroidogenesis. The purpose of the present study was to investigate steroid metabolism in human prostate cancer tissues with comparison between PZ and TZ. Human prostate cancer tumors were procured from the patients who underwent radical prostatectomy without any neoadjuvant therapy. Human prostate homogenates were used to quantify steroid levels intrinsically present in the tissues as well as formed after incubation with 2 µg/mL of 17-hydroxypregnenolone (17-OH-pregnenolone) or progesterone. A Waters Acquity ultraperformance liquid chromatography coupled to a Quattro Premier XE tandem quadrupole mass spectrometer using a C18 column was used to measure thirteen steroids from the classical and backdoor steroidogenesis pathways. The intrinsic prostate tissue steroid levels were similar between PZ and TZ with dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone and 17-OH-pregnenolone levels higher than the other steroids measured. Interestingly, 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one, and 5-pregnan-17-ol-3,20-dione formation was significantly higher in both the zones of prostate tissues, whereas, androstenedione, testosterone, DHT, and progesterone levels were significantly lower after 60 min incubation compared to the 0 min control incubations. The incubations with progesterone had a similar outcome with 5-pregnan-3,20-dione and 5-pregnan-3-ol-20-one levels were elevated and the levels of DHT were lower in both PZ and TZ tissues. The net changes in steroid formation after the incubation were more observable with 17-OH-pregnenolone than with progesterone. In our knowledge, this is the first report of comprehensive analyses of intrinsic prostate tissue steroids and precursor-driven steroid metabolism using a sensitive liquid chromatography-mass spectrometry assay. In summary, the PZ and TZ of human prostate exhibited similar steroidogenic ability with distinction in the manner each zone utilizes the steroid precursors to divert the activity towards backdoor pathway through a complex matrix of steroidogenic mechanisms.


Assuntos
Neoplasias da Próstata/patologia , Esteroides/metabolismo , Androstenodiona/análise , Androsterona/análise , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Espectrometria de Massas , Progesterona/análogos & derivados , Progesterona/análise , Progesterona/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Esteroides/análise , Esteroides/química , Testosterona/análise
5.
Int J Cancer ; 140(2): 358-369, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27672740

RESUMO

Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.


Assuntos
Proteínas Hedgehog/metabolismo , Comunicação Parácrina/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Microambiente Tumoral/fisiologia , Androgênios/metabolismo , Animais , Medula Óssea/metabolismo , Castração/métodos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/metabolismo , Testosterona/metabolismo
6.
Gen Comp Endocrinol ; 244: 108-117, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26899721

RESUMO

The zebra finch is a common model organism in neuroscience, endocrinology, and ethology. Zebra finches are generally considered opportunistic breeders, but the extent of their opportunism depends on the predictability of their habitat. This plasticity in the timing of breeding raises the question of how domestication, a process that increases environmental predictability, has affected their reproductive physiology. Here, we compared circulating steroid levels in various "strains" of zebra finches. In Study 1, using radioimmunoassay, we examined circulating testosterone levels in several strains of zebra finches (males and females). Subjects were wild or captive (Captive Wild-Caught, Wild-Derived, or Domesticated). In Study 2, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined circulating sex steroid profiles in wild and domesticated zebra finches (males and females). In Study 1, circulating testosterone levels in males differed across strains. In Study 2, six steroids were detectable in plasma from wild zebra finches (pregnenolone, progesterone, dehydroepiandrosterone (DHEA), testosterone, androsterone, and 5α-dihydrotestosterone (5α-DHT)). Only pregnenolone and progesterone levels changed across reproductive states in wild finches. Compared to wild zebra finches, domesticated zebra finches had elevated levels of circulating pregnenolone, progesterone, DHEA, testosterone, androstenedione, and androsterone. These data suggest that domestication has profoundly altered the endocrinology of this common model organism. These results have implications for interpreting studies of domesticated zebra finches, as well as studies of other domesticated species.


Assuntos
Domesticação , Tentilhões/fisiologia , Hormônios Esteroides Gonadais/sangue , Reprodução/fisiologia , Animais , Feminino , Tentilhões/sangue , Masculino
7.
J Cell Physiol ; 231(6): 1350-63, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26529564

RESUMO

It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs). FLCs are not fibroblasts nor other mesenchymal stromal cells, based on their expression of type-1 collagen, and other stromal cell marker genes. To identify the active factors in the conditioned medium, we cultured fibroblasts in a serum-free medium and collected it for further purification. Using the fractions from filter devices of different molecular weight cut-offs, and ammonium sulfate precipitation collected from the medium, we found the active fraction is a protein. We then purified this fraction by using fast protein liquid chromatography (FPLC) and identified it by mass spectrometer as macrophage colony-stimulating factor (M-CSF). The mechanisms of M-CSF-inducing trans-differentiation of hematopoietic cells seem to involve a tyrosine kinase signalling pathway and its known receptor. The FLCs express a number of stem cell markers including SSEA-1 and -3, OCT3/4, NANOG, and SOX2. Spontaneous and induced differentiation experiments confirmed that FLCs can be further differentiated into cell types of three germ layers. These data indicate that hematopoietic cells can be induced by M-CSF to dedifferentiate to multipotent stem cells. This study also provides a simple method to generate multipotent stem cells for clinical applications.


Assuntos
Tecido Adiposo/metabolismo , Transdiferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucócitos Mononucleares/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Comunicação Parácrina , Baço/metabolismo , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/citologia , Animais , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Fenótipo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Baço/citologia
8.
Front Neuroendocrinol ; 36: 108-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223867

RESUMO

Sex steroids play critical roles in the regulation of the brain and many other organs. Traditionally, researchers have focused on sex steroid signaling that involves travel from the gonads via the circulation to intracellular receptors in target tissues. This classic concept has been challenged, however, by the growing number of cases in which steroids are synthesized locally and act locally within diverse tissues. For example, the brain and prostate carcinoma were previously considered targets of gonadal sex steroids, but under certain circumstances, these tissues can upregulate their steroidogenic potential, particularly when circulating sex steroid concentrations are low. We review some of the similarities and differences between local sex steroid synthesis in the brain and prostate cancer. We also share five lessons that we have learned during the course of our interdisciplinary collaboration, which brought together neuroendocrinologists and cancer biologists. These lessons have important implications for future research in both fields.


Assuntos
Encéfalo/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Neoplasias da Próstata/metabolismo , Comportamento Cooperativo , Humanos , Masculino
9.
Artigo em Inglês | MEDLINE | ID: mdl-26610331

RESUMO

Here, we studied the life-long monogamous zebra finch, to examine the relationship between circulating sex steroid profiles and pair-maintenance behavior in pairs of wild-caught zebra finches (paired in the laboratory for >1 month). We used liquid chromatography-tandem mass spectrometry to examine a total of eight androgens and progestins [pregnenolone, progesterone, dehydroepiandrosterone (DHEA), androstenediol, pregnan-3,17-diol-20-one, androsterone, androstanediol, and testosterone]. In the plasma, only pregnenolone, progesterone, DHEA, and testosterone were above the limit of quantification. Sex steroid profiles were similar between males and females, with only circulating progesterone levels significantly different between the sexes (female > male). Circulating pregnenolone levels were high in both sexes, suggesting that pregnenolone might serve as a circulating prohormone for local steroid synthesis in zebra finches. Furthermore, circulating testosterone levels were extremely low in both sexes. Additionally, we found no correlations between circulating steroid levels and pair-maintenance behavior. Taken together, our data raise several interesting questions about the neuroendocrinology of zebra finches.


Assuntos
Tentilhões/fisiologia , Hormônios Esteroides Gonadais/sangue , Ligação do Par , Animais , Animais Selvagens , Análise Química do Sangue , Cromatografia Líquida , Feminino , Masculino , Caracteres Sexuais , Espectrometria de Massas em Tandem
10.
Prostate ; 75(12): 1300-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26047020

RESUMO

BACKGROUND: Capsaicin, the active compound in chili peppers, has demonstrated anti- carcinogenic properties in vitro in a number of malignancies, including the prostate. In the present study, we investigate the chemopreventive potential of capsaicin on prostate cancer using the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. The TRAMP is a murine model that resembles the progression of human disease. METHODS: Thirty-five 6-week-old TRAMP x C57BL/6 mice were randomized between treatment with capsaicin (5 mg/kg body weight) or control (saline) three times a week by oral gavage until 30 weeks of age. Body weight of animals was recorded thrice weekly. At termination, all tumors were extracted, recorded, and analyzed for histopathological analysis. To understand the effect of capsaicin on migration and invasion, in vitro experiments were carried out using PC3 cells. RESULTS: Mice in the control group expressed an overall trend of higher-grade disease with 37.5% poorly differentiated (PD), 18.75% moderately differentiated (MD), and 44% of well-differentiated (WD) adenocarcinoma, compared to the capsaicin-treated group with only 27.7% PD, 61.0% of WD, and 11.1% of intraepithelial neoplasia (PIN). The treatment group demonstrated a higher incidence of noncancerous PIN lesions compared to the control group. The capsaicin group also demonstrated a significant reduction (P < 0.05) in the metastatic burden compared to the controls, which correlated to a reduction in p27(Kip) (1) expression and neuroendocrine differentiation in prostate tumors. Furthermore, there were no differences in body weight between groups overtime, and no pathological toxicities in the liver and gastrointestinal tract with capsaicin consumption. In vitro studies revealed a dose-dependent reduction in the invasion and migration capacity of PC3 cells. CONCLUSION: The following study provides evidence supporting the safety and chemopreventive effects of capsaicin in the TRAMP model.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticarcinógenos/farmacologia , Capsaicina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fármacos do Sistema Sensorial/farmacologia , Adenocarcinoma/patologia , Administração Oral , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias da Próstata/patologia , Cicatrização
11.
Prostate ; 75(2): 113-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25307418

RESUMO

INTRODUCTION: Radio-sensitizing agents sensitize tumor cells to the lethal effects of radiotherapy (RT) allowing for use of lower doses of radiation to achieve equivalent cancer control, while minimizing adverse effects to normal tissues. Given their limited toxicity and ability to easily integrate into the diet, compounds occurring naturally in the diet make ideal potential radio-sensitizing agents. In this study, we have examined whether capsaicin, the active compound in chilli peppers, can modulate the response to RT in preclinical models of prostate cancer (PCa). METHODS: The effects of RT (1-8 Gy) and/or capsaicin (1-10 µM) on colony formation rates in human PCa cells were assessed using clonogenic assays. Mechanistic studies were performed by Western Blot, immunocytochemistry, and flow cytometry. Athymic mice (n = 40) were inoculated with human LNCaP cells. Once tumors reached 100 mm(3) , animals were randomized into four groups: control, capsaicin alone (5 mg/kg/d), RT alone (6 Gy), and capsaicin and RT. RESULTS: Capsaicin reduced colony formation rates and radio-sensitized human PCa cells (Sensitizer enhancement ratio = 1.3) which corresponded to the suppression of NFκB, independent of TRP-V1 receptor. Cell cycle modulation occurred following RT and capsaicin treatment independently. In vivo, oral administration of capsaicin with RT resulted in a 'greater than additive' growth delay and reduction in the tumor growth rate greater than capsaicin (P < 0.001) or RT (P < 0.03) alone. Immunohistochemical analysis revealed a reduction in proliferation and NFκB expression, and increase in DNA damage. DISCUSSION: Our findings suggest that capsaicin acts as a radio-sensitzing agent for PCa through the inhibition of NFκB signalling.


Assuntos
Capsaicina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Carcinogenesis ; 35(10): 2291-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023988

RESUMO

We recently demonstrated that both murine and human carcinomas grow significantly slower in mice on low carbohydrate (CHO), high protein diets than on isocaloric Western diets and that a further reduction in tumor growth rates occur when the low CHO diets are combined with the cyclooxygenase-2 inhibitor, celecoxib. Following upon these studies, we asked herein what effect low CHO, high protein diets, with or without celecoxib, might have on tumor metastasis. In the highly metastatic 4T1 mouse mammary tumor model, a 15% CHO, high protein diet supplemented with celecoxib (1 g/kg chow) markedly reduced lung metastases. Moreover, in longer-term studies using male Transgenic Adenocarcinoma of the Mouse Prostate mice, which are predisposed to metastatic prostate cancer, the 15% CHO diet, with and without celecoxib (0.3 g/kg chow), gave the lowest incidence of metastases, but a more moderate 25% CHO diet containing celecoxib led to the best survival. Metabolic studies with 4T1 tumors suggested that the low CHO, high protein diets may be forcing tumors to become dependent on amino acid catabolism for survival/growth. Taken together, our results suggest that a combination of a low CHO, high protein diet with celecoxib substantially reduces metastasis.


Assuntos
Dieta com Restrição de Carboidratos , Proteínas Alimentares/farmacologia , Metástase Neoplásica/tratamento farmacológico , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Celecoxib , Dietoterapia/métodos , Modelos Animais de Doenças , Neoplasias Pulmonares/dietoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica/terapia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
13.
Pediatr Blood Cancer ; 61(1): 107-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23940083

RESUMO

BACKGROUND: Molecular subtyping has allowed for the beginning of personalized treatment in children suffering from medulloblastoma (MB). However, resistance inevitably emerges against these therapies, particularly in the Sonic Hedgehog (SHH) subtype. We found that children with SHH subtype have the worst outcome underscoring the need to identify new therapeutic targets. PROCEDURE: High content screening of a 129 compound library identified agents that inhibited SHH MB growth. Lead molecular target levels, p90 ribosomal S6 kinase (RSK) were characterized by immunoblotting and qRT-PCR. Comparisons were made to human neural stem cells (hNSC). Impact of inhibiting RSK with the small molecule BI-D1870 or siRNA was assessed in growth assays (monolayer, neurosphere, and soft agar). NanoString was used to detect RSK in a cohort of 66 patients with MB. To determine BI-D1870 pharmacokinetics/pharmacodynamics, 100 mg/kg was I.P. injected into mice and tissues were collected at various time points. RESULTS: Daoy, ONS76, UW228, and UW426 MB cells were exquisitely sensitive to BI-D1870 but unresponsive to SHH inhibitors. Anti-tumor growth corresponded with inactivation of RSK in MB cells. BI-D1870 had no effect on hNSCs. Inhibiting RSK with siRNA or BI-D1870 suppressed growth, induced apoptosis, and sensitized cells to SHH agents. Notably, RSK expression is correlated with SHH patients. In mice, BI-D1870 was well-tolerated and crossed the blood-brain barrier (BBB). CONCLUSIONS: RSK inhibitors are promising because they target RSK which is correlated with SHH patients as well as cause high levels of apoptosis to only MB cells. Importantly, BI-D1870 crosses the BBB, acting as a scaffold for development of more long-lived RSK inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Meduloblastoma/genética , Pteridinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Cerebelares/enzimologia , Criança , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Immunoblotting , Masculino , Espectrometria de Massas , Meduloblastoma/enzimologia , Camundongos , Pteridinas/farmacocinética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Distribuição Tecidual , Transcriptoma , Transfecção
14.
Mol Cell Proteomics ; 11(10): 863-85, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22723089

RESUMO

Prostate cancer is the leading type of cancer diagnosed in men. In 2010, ~217,730 new cases of prostate cancer were reported in the United States. Prompt diagnosis of the disease can substantially improve its clinical outcome. Improving capability for early detection, as well as developing new therapeutic targets in advanced disease are research priorities that will ultimately lead to better patient survival. Eukaryotic cells secrete proteins via distinct regulated mechanisms which are either ER/Golgi dependent or microvesicle mediated. The release of microvesicles has been shown to provide a novel mechanism for intercellular communication. Exosomes are nanometer sized cup-shaped membrane vesicles which are secreted from normal and cancerous cells. They are present in various biological fluids and are rich in characteristic proteins. Exosomes may thus have potential both in facilitating early diagnosis via less invasive procedures or be candidates for novel therapeutic approaches for castration resistance prostate cancer. Because exosomes have been shown previously to have a role in cell-cell communication in the local tumor microenvironment, conferring activation of numerous survival mechanisms, we characterized constitutive lipids, cholesterol and proteins from exosomes derived from six prostate cell lines and tracked their uptake in both cancerous and benign prostate cell lines respectively. Our comprehensive proteomic and lipidomic analysis of prostate derived exosomes could provide insight for future work on both biomarker and therapeutic targets for the treatment of prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Citoplasmáticas/química , Exossomos/química , Proteínas de Neoplasias/metabolismo , Próstata/química , Neoplasias da Próstata/química , Receptores Androgênicos/metabolismo , Biomarcadores Tumorais/genética , Comunicação Celular , Linhagem Celular Tumoral , Colesterol/análise , Cromatografia Líquida , Expressão Gênica , Humanos , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Proteínas de Neoplasias/genética , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Esfingolipídeos/análise , Microambiente Tumoral
15.
Biopharm Drug Dispos ; 35(2): 104-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151189

RESUMO

20(S)-Protopanaxadiol (aPPD), a ginseng sapogenin, has been shown to be a promising anti-cancer compound and anti-depressant agent. Although the bacterial biotransformation of ginsenosides has been studied thoroughly, few have reported on the cytochrome P450 (P450) mediated metabolism of aPPD. Taken orally, aPPD must first undergo absorption and metabolism in the intestine before further metabolism in the liver. The present study investigated the comparative biotransformation profile of aPPD in human intestinal microsomes (HIM) and human liver microsomes (HLM) and characterized the human P450 enzymes involved in aPPD metabolism. Three major monooxygenated metabolites and five minor dioxygenated metabolites were identified as the predominant products in aPPD incubations with HIM and HLM using liquid chromatography-mass spectrometry. Reaction phenotyping studies were performed with a panel of specific P450 chemical inhibitors, antibody inhibition and human recombinant P450 enzymes. Ketoconazole, a CYP3A inhibitor, blocked the formation of oxygenated metabolites of aPPD in both HIM and HLM in a concentration dependent manner. Among the human recombinant P450 enzymes assayed, CYP3A4 exhibited the highest activity towards aPPD oxidative metabolite formation, followed by CYP3A5. In summary, the results have shown that aPPD is extensively metabolized by HIM and the metabolite profile following in vitro incubations is similar in HIM and HLM. CYP3A4 and CYP3A5 isoforms are the predominant enzymes responsible for oxygenation of aPPD in HIM and HLM. The characterization of aPPD as a CYP3A substrate may facilitate better prediction of drug-herb interactions when aPPD is taken concomitantly with other therapeutic agents.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Microssomos/metabolismo , Sapogeninas/farmacocinética , Biotransformação , Inibidores das Enzimas do Citocromo P-450/farmacologia , Humanos , Isoenzimas/metabolismo
16.
J Neurochem ; 127(6): 852-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23786539

RESUMO

Indoleamine 2,3 dioxygenase (Ido1), the first and rate-limiting enzyme of the kynurenine pathway (KP), is a striatally enriched gene with increased expression levels in the YAC128 mouse model of Huntington disease (HD). Our objective in this study was to delineate age-related KP alterations in this model. Three enzymes potentially catalyze the first step of the KP; Ido1 and Indoleamine 2,3 dioxygenase-2 were highly expressed in the striatum and Tryptophan 2,3 dioxygenase (Tdo2) in the cerebellum. During development, Ido1 mRNA expression is dynamically regulated and chronically up-regulated in YAC128 mice. Kynurenine (Kyn) to tryptophan (Trp) ratio, a measure of activity in the first step of the KP, was elevated in YAC128 striatum, but no change in Tdo2 mRNA levels or Kyn to Trp ratio was detected in the cerebellum. Ido1 induction was coincident with Trp depletion at 3 months and Kyn accumulation at 12 months of age in striatum. Changes in downstream KP metabolites of YAC128 mice generally followed a biphasic pattern with neurotoxic metabolites reduced at 3 months and increased at 12 months of age. Striatally specific induction of Ido1 and downstream KP alterations suggest involvement in HD pathogenesis, and should be taken into account in future therapeutic developments for HD.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Doença de Huntington/metabolismo , Cinurenina/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Feminino , Genótipo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Ácido Quinolínico/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo
17.
Biofouling ; 29(9): 1115-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24047458

RESUMO

Ureteral stents are fraught with problems. A conditioning film attaches to the stent surface within hours of implantation; however, differences between stent types and their role in promoting encrustation and bacterial adhesion and colonization remain to be elucidated. The present work shows that the most common components do not differ between stent types or patients with the same indwelling stent, and contain components that may drive stent encrustation. Furthermore, unlike what was previously thought, the presence of a conditioning film does not increase bacterial adhesion and colonization of stents by uropathogens. Genitourinary cytokeratins are implicated in playing a significant role in conditioning film formation. Overall, stent biomaterial design to date has been unsuccessful in discovering an ideal coating to prevent encrustation and bacterial adhesion. This current study elucidates a more global understanding of urinary conditioning film components. It also supports specific focus on the importance of physical characteristics of the stent and how they can prevent encrustation and bacterial adhesion.


Assuntos
Aderência Bacteriana , Materiais Biocompatíveis/análise , Biofilmes/crescimento & desenvolvimento , Stents , Adulto , Idoso , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Stents/classificação , Ureter/microbiologia
18.
Medicines (Basel) ; 10(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976310

RESUMO

Background: Abiraterone acetate is a cytochrome P450 17A1 (CYP17A1) inhibitor that is indicated for use in both castration-resistant and castration-sensitive prostate cancer patients. To manage the mineralocorticoid effects of CYP17A1 inhibition, a glucocorticoid such as dexamethasone is co-administered with abiraterone. The goal of the present study was to understand the effect of dexamethasone on the disposition of abiraterone. Methods: Adult male CD-1 mice were treated with either dexamethasone (80 mg/kg/day) or vehicle for three consecutive days, followed by the administration of a single dose of abiraterone acetate (180 mg/kg) as an oral gavage. Blood samples were collected by tail bleeding at timepoints between 0 to 24 h. Subsequently, abiraterone was extracted from the mouse serum using a neutral pH condition and serum abiraterone levels were determined using a liquid chromatography-mass spectrometry assay. Results: Our results demonstrated that dexamethasone lowered the maximum plasma concentration and area under the curve parameters by approximately five- and ten-fold, respectively. Similar effects were also observed on the plasma half-life and oral clearance parameters. This is the first report of dexamethasone effect on abiraterone disposition in vivo. Conclusions: We conclude that dexamethasone has the potential to reduce the plasma abiraterone level and thus compromise its CYP17A1 inhibitory ability in the procancerous androgen biosynthesis pathway. Thus, use of a higher abiraterone dose may be warranted when used alongside dexamethasone.

19.
Oncogene ; 42(10): 748-758, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611121

RESUMO

The androgen receptor (AR) plays an important role in PCa metabolism, with androgen receptor pathway inhibition (ARPI) subjecting PCa cells to acute metabolic stress caused by reduced biosynthesis and energy production. Defining acute stress response mechanisms that alleviate ARPI stress and therefore mediate prostate cancer (PCa) treatment resistance will help improve therapeutic outcomes of patients treated with ARPI. We identified the up-regulation of chaperone-mediated autophagy (CMA) in response to acute ARPI stress, which persisted in castration-resistant PCa (CRPC); previously undefined in PCa. CMA is a selective protein degradation pathway and a key stress response mechanism up-regulated under several stress stimuli, including metabolic stress. Through selective protein degradation, CMA orchestrates the cellular stress response by regulating cellular pathways through selective proteome remodeling. Through broad-spectrum proteomic analysis, CMA coordinates metabolic reprogramming of PCa cells to sustain PCa growth and survival during ARPI; through the upregulation of mTORC1 signaling and pathways associated with PCa biosynthesis and energetics. This not only promoted PCa growth during ARPI, but also promoted the emergence of CRPC in-vivo. During CMA inhibition, PCa metabolism is compromised, leading to ATP depletion, resulting in a profound anti-proliferative effect on PCa cells, and is enhanced when combined with ARPI. Furthermore, CMA inhibition prevented in-vivo tumour formation, and also re-sensitized enzalutamide-resistant cell lines in-vitro. The profound anti-proliferative effect of CMA inhibition was attributed to cell cycle arrest mediated through p53 transcriptional repression of E2F target genes. In summary, CMA is an acute ARPI stress response mechanism, essential in alleviating ARPI induced metabolic stress, essential for ensuring PCa growth and survival. CMA plays a critical role in the development of ARPI resistance in PCa.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/genética , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteoma , Proteômica , Autofagia , Linhagem Celular Tumoral
20.
Oncogene ; 42(9): 693-707, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596844

RESUMO

Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Nitrilas/uso terapêutico , Antagonistas de Receptores de Andrógenos , Membro C3 da Família 1 de alfa-Ceto Redutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA