Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; 20(28): e2310257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497846

RESUMO

Single-walled carbon nanotubes (SWNTs) are promising materials for generating high-performance electronic devices. However, these applications are greatly restricted by their lack of purity and solubility. Commercially available SWNTs are a mixture of semi-conducting (sc-) and metallic (m-) SWNTs and are insoluble in common solvents. Conjugated polymers can selectively disperse either sc- or m-SWNTs and increase their solubility; however, the conductivity of conjugated polymer-wrapped SWNTs is largely affected by the polymer side chains. Here, a poly(fluorene-co-phenylene) polymer that contains a self-immolative linker as part of its sidechains is reported. The self-immolative linker is stabilized with a tert-butyldimethylsilyl ether group that, upon treatment with tetra-n-butylammonium fluoride (TBAF), undergoes a 1,6-elimination reaction to release the sidechain. Sonication of this polymer with SWNTs in tetrahydrofuran (THF) results in concentrated dispersions that are used to prepare polymer-SWNT thin films. Treatment with TBAF caused side-chain cleavage into carbon dioxide and the corresponding diol, which can be easily removed by washing with solvent. This process is characterized by a combination of absorption and Raman spectroscopy, as well as four-point probe measurements. The conductance of the SWNT thin films increased ≈60-fold upon simple TBAF treatment, opening new possibilities for producing high-conductivity SWNT materials for numerous applications.

2.
Bioconjug Chem ; 34(8): 1467-1476, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37499133

RESUMO

A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.


Assuntos
Dendrímeros , Dendrímeros/química , Microscopia Crioeletrônica , Azidas , Espectroscopia de Infravermelho com Transformada de Fourier , Polietilenoglicóis/química
3.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771137

RESUMO

Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.

4.
J Am Chem Soc ; 143(2): 649-656, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33410702

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) are layered, structurally regular, and permanently porous macromolecules. When reactive groups are embedded into a COF structure, subsequent chemical reactions can be performed following polymerization. As such, a postsynthetic modification (PSM) strategy provides diverse materials from a single set of COF monomers and polymerization protocols. Here, we report the synthesis of an asymmetric dibenzocyclooctyne-containing imine-linked 2D COF, which readily undergoes strain-promoted azide-alkyne cycloaddition (SPAAC) reactions without catalyst under mild and dilute conditions. This approach was used to quantitatively decorate the COF lattice with alkyl chains and amines, all without the need for exogenous species. Functionalization may result in spontaneous delamination of bulk COF materials into solution-stable sheets, demonstrating the utility of this technique. As such, this platform is useful for postsynthetic functionalization with sensitive chemical functionalities that are not amenable to direct polymerization or existing PSM strategies.

5.
Chemistry ; 27(16): 5057-5073, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33017499

RESUMO

Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.

6.
Angew Chem Int Ed Engl ; 60(6): 2980-2986, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33258541

RESUMO

A soluble poly(tetrazine) polymer was prepared via Suzuki polycondensation of 3,6-bis(5-bromofuran-2-yl)-1,2,4,5-tetrazine and a fluorene diboronate derivative. It can undergo efficient and quantitative post-polymerization inverse-electron-demand Diels-Alder click reactions with a variety of trans-cyclooctene (TCO) derivatives. The resulting polymers were oxidized to convert dihydropyridazine rings into pyridazines. The absorption spectra of the product polymers, both before and after oxidation, showed hypsochromic shifts that correlated with steric hindrance of the appended side chains. They also exhibited a significantly enhanced fluorescence intensity relative to the original poly(tetrazine). While gel-permeation chromatography indicated that the product polymers exhibited longer retention times, NMR end-group analysis showed that the polymers retained relatively constant degrees of polymerization. Graft copolymers were easily prepared via reaction with TCO-functionalized poly(ethylene glycol) chains and a cross-linked foam was produced by reacting the poly(tetrazine) with a bis-TCO crosslinker.

7.
Angew Chem Int Ed Engl ; 58(25): 8448-8453, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30893493

RESUMO

A series of 2,2-bis(hydroxymethyl)propionic acid dendrons of generation 2 through 8 having a strained cyclooctyne at the core and hydroxy groups at the periphery were prepared by a divergent method and used to functionalize azide-decorated α-chymotrypsin. The ability of the appended dendrons to selectively block enzyme activity (through a molecular sieving effect) was investigated using a small molecule substrate (benzoyl-l-tyrosine p-nitroanilide), as well as two proteins of different size (casein and bovine serum albumin). Additionally, the ability of dendrons to block complexation with a chymotrypsin antagonist, α-antichymotrypsin, was investigated, and it was found that the dendron coating effectively prevented inhibition by this antagonist. We found that a critical generation is required to achieve efficient sieving with bis-MPA dendrons, which illustrates the importance of macromolecular architecture and size in the shielding of proteins.


Assuntos
Caseínas/química , Caseínas/metabolismo , Quimotripsina/antagonistas & inibidores , Dendrímeros/farmacologia , Polímeros/química , Polímeros/metabolismo , Propionatos/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Quimotripsina/metabolismo , Dendrímeros/síntese química , Dendrímeros/química , Estrutura Molecular , Tamanho da Partícula , Propionatos/síntese química , Propionatos/química
8.
Chemistry ; 24(39): 9799-9806, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29750382

RESUMO

Applications of single-walled carbon nanotubes (SWCNTs) are hampered by the mixtures of metallic and semiconducting SWCNTs that are present in commercial samples. Separation of SWCNTs according to electronic type is therefore extremely important. Recently, the selective interaction between the conjugated polymer, poly(9,9-di-n-dodecyl-fluorenyl-2,7-diyl) and semiconducting SWCNTs has been reported. However, the mechanism responsible for this selectivity is poorly understood. To determine whether this polymer is only selective for semiconducting SWCNTs, we exposed it to mixtures of metallic and semiconducting SWCNTs in different ratios. We found that the polymer is indeed selective for semiconducting SWCNTs in toluene, but only when the starting ratio is below 67:33 metallic:semiconducting. When the starting ratio is increased to 67:33 or higher, the amount of metallic SWCNTs dispersed dramatically increases. If the solvent is changed to THF, the threshold ratio at which metallic SWCNTs begin to be dispersed is much lower. This indicates that the polymer exhibits a preference for interaction with semiconducting SWCNTs, but is not precluded from interaction with metallic SWCNTs if exposed to a high enough concentration.

9.
Biomacromolecules ; 18(12): 4054-4059, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-28968079

RESUMO

A common issue with hydrogel formulations is batch-to-batch irreproducibility originating from poorly defined polymer precursors. Here, we report the use of dendritic polymer end-groups to address this issue and maintain reproducibility between batches of poly(ethylene glycol) (PEG) hydrogels. Specifically, we synthesized two end-functionalized PEG chains: one with azide-terminated first- and second-generation dendrons and the other with strained cyclooctynes. The two complementary azide and alkyne polymers react via strain-promoted alkyne-azide cycloaddition (SPAAC) to produce hydrogels quickly in the absence of additional reagents or catalyst at low polymer concentrations. Hydrogels made with first-generation dendrons gelled in minutes and exhibited a small degree of swelling when incubated in PBS buffer at 37 °C, whereas hydrogels made from second-generation dendrons gelled in seconds with almost no swelling upon incubation at 37 °C. In both cases, the hydrogels proved reproducible, resulting in identical Young's modulus values from different batches. The hydrogels prepared with second-generation dendrons were seeded with human mesenchymal stem cells and showed high cell viability as well as cell spreading over a two-week time frame. These studies show that the SPAAC hydrogels are noncytotoxic and are capable of supporting cell growth.


Assuntos
Alcinos/química , Azidas/química , Reagentes de Ligações Cruzadas/química , Dendrímeros/química , Hidrogéis/química , Polietilenoglicóis/química , Catálise , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reação de Cicloadição/métodos , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Polímeros/química , Reprodutibilidade dos Testes
10.
Chemistry ; 22(41): 14560-6, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27514320

RESUMO

The separation and isolation of semiconducting and metallic single-walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene-co-pyridine) copolymer and its cationic methylated derivative, and show that electron-deficient conjugated π-systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis-NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.

11.
Biomacromolecules ; 17(3): 1093-100, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26842783

RESUMO

A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.


Assuntos
Alcinos/química , Azidas/química , Hidrogéis/química , Polietilenoglicóis/química , Células 3T3 , Adsorção , Animais , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Fibroblastos/efeitos dos fármacos , Hidrogéis/efeitos adversos , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Reologia , Soroalbumina Bovina/química
12.
Angew Chem Int Ed Engl ; 55(3): 945-9, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26643988

RESUMO

A conjugated poly(phenyl-co-dibenzocyclooctyne) Schiff-base polymer, prepared through polycondensation of dibenzocyclooctyne bisamine (DIBO-(NH2)2) with bis(hexadecyloxy)phenyldialdehyde, is reported. The resulting polymer, which has a high molecular weight (M(n)>30 kDa, M(w)>60 kDa), undergoes efficient strain-promoted alkyne-azide cycloaddition reactions with a series of azides. This enables quantitative modification of each repeat unit within the polymer backbone and the rapid synthesis of a conjugated polymer library with widely different substituents but a consistent degree of polymerization (DP). Kinetic studies show a second-order reaction rate constant that is consistent with monomeric dibenzocyclooctynes. Grafting with azide-terminated polystyrene and polyethylene glycol monomethyl ether chains of varying molecular weight resulted in the efficient syntheses of a series of graft copolymers with a conjugated backbone and maximal graft density.

13.
Biomacromolecules ; 16(9): 3033-41, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26295201

RESUMO

A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.


Assuntos
Dendrímeros , Marcação por Isótopo , Neoplasias Experimentais/tratamento farmacológico , Poliésteres , Polietilenoglicóis , Tecnécio , Animais , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Radiografia , Ratos , Tecnécio/química , Tecnécio/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nanotechnology ; 26(39): 395301, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26351867

RESUMO

Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds.

15.
J Am Chem Soc ; 136(3): 970-7, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24369733

RESUMO

A vinylogous tetrathiafulvalene (TTFV) monomer was prepared and copolymerized with fluorene to give a conformationally switchable conjugated copolymer. This copolymer was shown to undergo a conformational change upon protonation with trifluoroacetic acid (TFA). When mixed with single-walled carbon nanotubes (SWNTs), this TTFV-fluorene copolymer exhibited strong interactions with the SWNT surface, leading to stable, concentrated nanotube dispersions in toluene. Photoluminescence excitation mapping indicated that the copolymer selectively disperses low-diameter SWNTs, as would be expected from its ability to form a tightly coiled conformation on the nanotube surface. Addition of TFA to the copolymer-SWNT dispersion resulted in a rapid conformational change and desorption of the polymer from the SWNT surface, resulting in precipitation of pure SWNTs that were completely free of polymer. Importantly, the nanotubes isolated after dispersion and release by the TTFV-fluorene copolymer were more pure than the original SWNTs that were initially dispersed.

16.
J Org Chem ; 79(16): 7728-33, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25032788

RESUMO

Tris(pentafluorophenyl)boron B(C6F5)3 is an effective catalyst for the hydrosilylative reduction of tertiary and N-phenyl secondary amides. It allows for the mild reduction of a variety of these amides in near quantitative yield, with minimal purification, at low temperatures, and with short reaction times. This reduction shows functional group tolerance for alkenes, nitro groups, and aryl halides, including aryl iodides.

17.
ACS Appl Mater Interfaces ; 16(35): 46600-46608, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39185575

RESUMO

Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.

18.
J Pharm Sci ; 113(5): 1220-1227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37984698

RESUMO

Rapidly dissolving polymer thin films, or oral thin films (OTFs), have recently emerged as an improved oral drug delivery vehicle with its ability to bypass liver first pass metabolism, longer shelf-life, and simpler transport and distribution requirements, compared to traditional tablets and liquid formulations. Loratadine (LOR), an antihistamine commonly used to treat allergic rhinitis, undergoes liver first pass metabolism and is a prime candidate for incorporation within an OTF. However, loratadine is a BCS II drug with low aqueous solubility. Herein, the solubility of loratadine was improved by complexation with methyl ß-cyclodextrin (MBCD) by co-evaporation of 2:1, 1:1, and 1:2 LOR:MBCD ratios and incorporation into a pullulan-based OTF at 4 wt% by solvent casting at 50 °C for 30 - 35 min. A therapeutically relevant 10 mg LOR dose could be prepared in a 3 cm by 3 cm OTF. The feasibility of complexation was observed with a Bs-type phase solubility diagram, and complexation itself was confirmed via differential scanning calorimetry (DSC) by disappearance of the LOR melting peak, Fourier-transform infrared spectroscopy (FTIR) by shifting of the C=O peak, via 1H NMR spectroscopy by downfield shifting and change in peak multiplicity of the LOR aromatic protons, and via diffusion-ordered spectroscopy by a decrease in the diffusion coefficient of LOR:MBCD complex. LOR:MBCD could be incorporated homogeneously throughout an OTF, and LOR:MBCD OTFs exhibited reasonable mechanical strength and endured 12 ± 3 folds before breaking. LOR:MBCD OTFs disintegrated within 38 ± 10 s. The cumulative in vitro release of LOR:MBCD OTFs peaked at 80 % within 3-4 min of dissolution, and LOR in LOR:MBCD OTFs exhibited permeability across a 0.22 µm nitrocellulose membrane, demonstrating its applicability as a rapid drug delivery vehicle.


Assuntos
Ciclodextrinas , Loratadina , Loratadina/química , Sistemas de Liberação de Medicamentos , Solubilidade , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Small ; 9(4): 552-60, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-22987605

RESUMO

Single-walled carbon nanotubes are grafted with polystyrene chains employing a graft-to protocol. Thermogravimetric analysis allows calculation of the grafted chain density and average interchain separation on the nanotube surface as a function of molecular weight. The separation scales with molecular weight as a power law with an exponent of ca. 0.588, showing the grafted chains to be in a swollen random walk conformation. This implies that chain packing is controlled by coil size in solution. In addition, the dispersed concentration of functionalized nanotubes scales with the size of the steric potential barrier that prevents aggregation of polymer functionalized nanotubes. It is also shown that the molecular weight of the grafted chains significantly affects the mechanical properties of nanotube films.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Membranas Artificiais , Solubilidade
20.
J Phys Chem B ; 127(37): 8040-8048, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37673692

RESUMO

Pyrene excimer formation (PEF) was used to probe the intramacromolecular conformational change experienced by low generation pyrene-labeled PAMAM dendrimers referred to as PyCX-PAMAM-GY, where X (=4, 8, or 12) and Y (=0, 1, or 2) represent the number of atoms in the pyrenyl linker and the dendrimer generation, respectively. Each sample was studied in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) with and without 5 mM HCl. Global analysis of the monomer and excimer time-resolved fluorescence decays using the model free analysis (MFA) yielded the average rate constant of excimer formation, ⟨k⟩, which was compared with the local pyrene concentration ([Py]loc) of the PyCX-PAMAM-GY samples calculated by assuming that the oligomeric segments constituting the dendrimer's interior obeyed Gaussian statistics. A notable decrease in ⟨k⟩ was observed upon the addition of 5 mM HCl to the PyCX-PAMAM-GY solutions and was attributed to swelling of the dendrimers resulting from the protonation of the internal tertiary amines. The reversibility of this conformational change could also be monitored via PEF. Solvent differences between DMF and DMSO were accounted for by dividing ⟨k⟩ by kdiff, the bimolecular rate constant for diffusive PEF of a n-hexyl-1-pyrenebutyramide model compound, to yield the ⟨k⟩/kdiff ratio. Comparison between the ⟨k⟩/kdiff ratios obtained for all the PyCX-PAMAM-GY samples with and without 5 mM HCl revealed a 13% increase in the radius of the PAMAM-GY dendrimers upon protonation of their internal tertiary amines in agreement with earlier reports. These experiments illustrate that PEF represents a powerful experimental means to quantitatively probe the intramacromolecular conformational changes of complex macromolecules in solution, in a manner that complements scattering techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA