RESUMO
A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at âs=8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.
RESUMO
This Letter presents a search for quantum black-hole production using 20.3 fb-1 of data collected with the ATLAS detector in pp collisions at the LHC at âs = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Assuntos
Partículas Elementares , Modelos Teóricos , Teoria Quântica , Elétrons , MésonsRESUMO
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Δφ, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Δφ dependence of jet yields in 0.14 nb(-1) of â(s(NN))=2.76 TeV Pb+Pb collisions at the LHC for jet transverse momenta p(T)>45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Δφ was characterized by the parameter, v(2)(jet), and the ratio of out-of-plane (Δφ~π/2) to in-plane (Δφ~0) yields. Nonzero v(2)(jet) values were measured in all centrality bins for p(T)<160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
RESUMO
This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7 fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at âs=7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of α(â)P, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, α(â)P(CPC)=-0.035±0.014(stat)±0.037(syst) and α(â)P(CPV)=0.020±0.016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quark polarization.
RESUMO
Two-particle correlations in relative azimuthal angle (Δø) and pseudorapidity (Δη) are measured in sqrt[s(NN)] = 5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 µb(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (ΣE(T)(Pb)) summed over 3.1 < η < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < |Δ Î· | < 5) "near-side" (Δø ~ 0) correlation that grows rapidly with increasing ΣE(T)(Pb). A long-range "away-side" (Δø ~ π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣE(T)(Pb), is found to match the near-side correlation in magnitude, shape (in Δη and Δø) and ΣE(T)(Pb) dependence. The resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
RESUMO
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at sqrt[s] = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
RESUMO
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb(-1) of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt[s(NN)]=2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
RESUMO
A measurement of the ZZ production cross section in proton-proton collisions at sqrt[s] = 7 TeV using data corresponding to an integrated luminosity of 1.02 fb(-1) recorded by the ATLAS experiment at the LHC is presented. Twelve events containing two Z boson candidates decaying to electrons and/or muons are observed, with an expected background of 0.3 ± 0.3(stat)(-0.3)(+0.4)(syst) events. The cross section measured in a phase-space region with good detector acceptance and for dilepton masses within the range 66 to 116 GeV is σ(ZZ â â+ â- â+ â-)(fid) = 19.4(-5.2)(+6.3)(stat)(-0.7)(+0.9)(syst) ± 0.7(lumi) fb. The resulting total cross section for on-shell ZZ production, σ(ZZ)(tot) = 8.5(-2.3)(+2.7)(stat)(-0.3)(+0.4)(syst) ± 0.3(lumi) pb, is consistent with the standard model expectation of 6.5(-0.2)(+0.3) pb calculated at the next-to-leading order in QCD. Limits on anomalous neutral triple gauge boson couplings are derived.
RESUMO
A search for new phenomena in tt events with large missing transverse momentum in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The measurement is based on 1.04 fb(-1) of data collected with the ATLAS detector at the LHC. Contributions to this final state may arise from a number of standard model extensions. The results are interpreted in terms of a model where new top-quark partners are pair produced and each decay to an on-shell top (or antitop) quark and a long-lived undetected neutral particle. The data are found to be consistent with standard model expectations. A limit at 95% confidence level is set excluding a cross section times branching ratio of 1.1 pb for a top-partner mass of 420 GeV and a neutral particle mass less than 10 GeV. In a model of exotic fourth generation quarks, top-partner masses are excluded up to 420 GeV and neutral particle masses up to 140 GeV.
RESUMO
A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt[s] = 7 TeV. The measurement is based on 4.7 fb(-1) of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with standard model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.
RESUMO
A search for direct pair production of supersymmetric top squarks (t(1)) is presented, assuming the t(1) decays into a top quark and the lightest supersymmetric particle, χ(1)(0), and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted standard model background of 13.5(-3.6)(+3.7)(4.4(-1.3)(+1.7)) events in two signal regions based on ∫Ldt = 4.7 fb(-1) of pp collision data taken at sqrt[s] = 7 TeV with the ATLAS detector at the LHC. An exclusion region in the t(1) versus χ(1)(0) mass plane is evaluated: 370
RESUMO
A QCD analysis is reported of ATLAS data on inclusive W(±) and Z boson production in pp collisions at the LHC, jointly with ep deep-inelastic scattering data from HERA. The ATLAS data exhibit sensitivity to the light quark sea composition and magnitude at Bjorken xâ¼0.01. Specifically, the data support the hypothesis of a symmetric composition of the light quark sea at low x. The ratio of the strange-to-down sea quark distributions is determined to be 1.00(-0.28)(+0.25) at absolute four-momentum transfer squared Q(2)=1.9 GeV(2) and x=0.023.
RESUMO
This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb(-1) of pp collisions recorded at a center-of-mass energy of sqrt[s]=7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/ϵ fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where ϵ is the monopole reconstruction efficiency. The efficiency ϵ is high and uniform in the fiducial region given by pseudorapidity |η|<1.37 and transverse kinetic energy 600-700
RESUMO
A search is reported for the pair production of a new quark b' with at least one b' decaying to a Z boson and a bottom quark. The data, corresponding to 2.0 fb(-1) of integrated luminosity, were collected from pp collisions at âs = 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. Using events with a b-tagged jet and a Z boson reconstructed from opposite-charge electrons, the mass distribution of large transverse momentum b' candidates is tested for an enhancement. No evidence for a b' signal is detected in the observed mass distribution, resulting in the exclusion at a 95% confidence level of b' quarks with masses m (b') < 400 GeV that decay entirely via b' â Z+b. In the case of a vectorlike singlet b' mixing solely with the third standard model generation, masses m(b') < 358 GeV are excluded.
RESUMO
The results of a search for pair production of the scalar partners of bottom quarks in 2.05 fb(-1) of pp collisions at sqrt[s]=7 TeV using the ATLAS experiment are reported. Scalar bottom quarks are searched for in events with large missing transverse momentum and two jets in the final state, where both jets are identified as originating from a bottom quark. In an R-parity conserving minimal supersymmetric scenario, assuming that the scalar bottom quark decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits are obtained in the b(1) - χ(1)(0) mass plane such that for neutralino masses below 60 GeV scalar bottom masses up to 390 GeV are excluded.
RESUMO
A search for the Higgs boson has been performed in the HâWW(*)ââ(+)νâ(-)ν[over ¯] channel (â=e/µ) with an integrated luminosity of 2.05 fb(-1) of pp collisions at âs=7 TeV collected with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 110 GeV
RESUMO
A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9 fb(-1) collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of âs=7 TeV. In the diphoton mass range 110-150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110-150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113-115 GeV and 134.5-136 GeV.
RESUMO
The χ(b)(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at sqrt[s] = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb(-1), these states are reconstructed through their radiative decays to Υ(1S,2S) with Υ â µ+ µ-. In addition to the mass peaks corresponding to the decay modes χ(b)(1P,2P) â Υ(1S)γ, a new structure centered at a mass of 10.530 ± 0.005(stat) ± 0.009(syst) GeV is also observed, in both the Υ(1S)γ and Υ(2S)γ decay modes. This structure is interpreted as the χ(b)(3P) system.
RESUMO
This Letter presents a search for pair production of heavy down-type quarks decaying via b' â Wt in the lepton + jets channel, as b'b' â W- tW+ t â bbW+ W- W+ W- â l± νbbqqqqqq. In addition to requiring exactly one lepton, large missing transverse momentum, and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum W bosons. In data corresponding to an integrated luminosity of 1.04 fb(-1) from pp collisions at sqrt[s] = 7 TeV recorded with the ATLAS detector, a heavy down-type quark with mass less than 480 GeV can be excluded at the 95% confidence level.
RESUMO
This Letter presents a search for tb resonances in 1.04 fb(-1) of LHC proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 7 TeV. Events with a lepton, missing transverse momentum, and two jets are selected and the invariant mass of the corresponding final state is reconstructed. The search exploits the shape of the tb invariant mass distribution compared to the expected standard model backgrounds. The model of a right-handed W(R)' with standard model-like couplings is chosen as the benchmark model for this search. No statistically significant excess of events is observed in the data, and upper limits on the cross section times the branching ratio of W(R)' resonances at 95% C.L. lie in the range of 6.1-1.0 pb for W(R)' masses ranging from 0.5 to 2.0 TeV. These limits are translated into a lower bound on the allowed right-handed W(R)' mass, giving m(W(R)'))>1.13 TeV at 95% C.L.