Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1218-1230, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297678

RESUMO

We report on an Yb:YAG thin-disk multipass amplifier delivering 100 ns long pulses at a central wavelength of 1030 nm with an energy of 330 mJ at a repetition rate of 100 Hz. The beam quality factor at the maximum energy was measured to be M2 < 1.17. The small signal gain is 21.7, and the gain at 330 mJ was measured to be 6.9. The 20-pass amplifier is designed as a concatenation of stable resonator segments in which the beam is alternately Fourier transformed and relay-imaged back to the disk by a 4f-imaging optical scheme stage. The Fourier transform propagation makes the output beam robust against spherical phase front distortions, while the 4f-stage is used to compensate the thermal lens of the thin-disk and to reduce the footprint of the amplifier.

2.
Opt Express ; 31(18): 29558-29572, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710753

RESUMO

We demonstrate an injection-seeded thin-disk Yb:YAG laser at 1030 nm, stabilized by the Pound-Drever-Hall (PDH) method. We modified the PDH scheme to obtain an error signal free from Trojan locking points, which allowed robust re-locking of the laser and reliable long-term operation. The single-frequency pulses have 50 mJ energy (limited to avoid laser-induced damage) with a beam quality of M2 < 1.1 and an adjustable length of 55-110 ns. Heterodyne measurements confirmed a spectral linewidth of 3.7 MHz. The short pulse build-up time (850 ns) makes this laser suitable for laser spectroscopy of muonic hydrogen, pursued by the CREMA collaboration.

3.
Rev Sci Instrum ; 94(1): 013001, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725577

RESUMO

The Pound-Drever-Hall (PDH) technique is a popular method for stabilizing the frequency of a laser to a stable optical resonator or, vice versa, the length of a resonator to the frequency of a stable laser. We propose a refinement of the technique yielding an "infinite" dynamic (capture) range so that a resonator is correctly locked to the seed frequency, even after large perturbations. The stable but off-resonant lock points (also called Trojan operating points), present in conventional PDH error signals, are removed by phase modulating the seed laser at a frequency corresponding to half the free spectral range of the resonator. We verify the robustness of our scheme experimentally by realizing an injection-seeded Yb:YAG thin-disk laser. We also give an analytical formulation of the PDH error signal for arbitrary modulation frequencies and discuss the parameter range for which our PDH locking scheme guarantees correct locking. Our scheme is simple as it does not require additional electronics apart from the standard PDH setup and is particularly suited to realize injection-seeded lasers and injection-seeded optical parametric oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA