Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34385268

RESUMO

BACKGROUND: Obese children with asthma are more vulnerable to air pollution, especially fine particulate matter (PM2.5), but reasons are poorly understood. We hypothesised that differences in breathing patterns (tidal volume, respiratory rate and minute ventilation) due to elevated body mass index (BMI) may contribute to this finding. OBJECTIVE: To investigate the association of BMI with breathing patterns and deposition of inhaled PM2.5. METHODS: Baseline data from a prospective study of children with asthma were analysed (n=174). Tidal breathing was measured by a pitot-tube flowmeter, from which tidal volume, respiratory rate and minute ventilation were obtained. The association of BMI z-score with breathing patterns was estimated in a multivariable model adjusted for age, height, race, sex and asthma severity. A particle dosimetry model simulated PM2.5 lung deposition based on BMI-associated changes in breathing patterns. RESULTS: Higher BMI was associated with higher tidal volume (adjusted mean difference (aMD) between obese and normal-range BMI of 25 mL, 95% CI 5-45 mL) and minute ventilation (aMD 453 mL·min-1, 95% CI 123-784 mL·min-1). Higher tidal volumes caused higher fractional deposition of PM2.5 in the lung, driven by greater alveolar deposition. This translated into obese participants having greater per-breath retention of inhaled PM2.5 (aMD in alveolar deposition fraction of 3.4%, 95% CI 1.3-5.5%), leading to worse PM2.5 deposition rates. CONCLUSIONS: Obese children with asthma breathe at higher tidal volumes that may increase the efficiency of PM2.5 deposition in the lung. This finding may partially explain why obese children with asthma exhibit greater sensitivity to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Obesidade Infantil , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Asma/complicações , Criança , Exposição Ambiental , Humanos , Pulmão , Material Particulado/análise , Obesidade Infantil/complicações , Estudos Prospectivos , Volume de Ventilação Pulmonar
2.
J Occup Environ Hyg ; 17(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800373

RESUMO

This study characterized concentration metrics of airborne nanoparticles and their time series across major operations of a taconite mine through monitoring respirable and ultrafine particle concentrations at four major processing departments of the mine: crushing, dry milling, wet milling, and pelletizing (United Taconite Mine, Iron Junction, MN, USA). We used three area stations of direct-reading instruments to estimate concentration metrics including PM1 (particles with an aerodynamic diameter <1 µm), respirable dust (particles sampled according to the respirable convention with a 50% sampling efficiency at an aerodynamic diameter of 4 µm), PN (total number concentration of particles), and lung-deposited surface area concentrations (LDSA) of particles smaller than 300 nm, on two different days. Results for each station were compared using bivariate correlation analysis to obtain insight into the spatial distribution, and intra-class correlation coefficients (ICCs) to evaluate the between-day repeatability between the measurements. Comparability of the LDSA concentrations measured by two different devices was also investigated using linear regression. Results revealed that the pelletizing operation produced the highest average LDSA concentration on both days (with a maximum concentration of 199 ± 48 µm2/cm3 in pelletizing, 141 ± 52 µm2/cm3 in crushing, 91 ± 9 µm2/cm3 in dry milling, and 85 ± 7 µm2/cm3 in wet milling). Concentrations in all operations showed a fair to excellent between-day repeatability but they were significantly different within stations of each operation. Measured LDSA concentrations did not show a linear correlation between different instruments, except for crushing.


Assuntos
Exposição por Inalação/estatística & dados numéricos , Ferro/efeitos adversos , Mineração , Exposição Ocupacional/estatística & dados numéricos , Silicatos/efeitos adversos , Aerossóis , Poluentes Ocupacionais do Ar/análise , Humanos , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Tamanho da Partícula
3.
J Occup Environ Hyg ; 16(2): 179-190, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30412037

RESUMO

Typical low-cost electrochemical sensors for ozone (O3) are also highly responsive to nitrogen dioxide (NO2). Consequently, a single sensor's response to O3 is indistinguishable from its response to NO2. Recently, a method for quantifying O3 concentrations became commercially available (Alphasense Ltd., Essex, UK): collocating a pair of sensors, a typical oxidative gas sensor that responds to both O3 and NO2 (model OX-B431) and a second similar sensor that filters O3 and responds only to NO2 (model NO2-B43F). By pairing the two sensors, O3 concentrations can be calculated. We calibrated samples of three NO2-B43F sensors and three OX-B431 sensors with NO2 and O3 exclusively and conducted mixture experiments over a range of 0-1.0 ppm NO2 and 0-125 ppb O3 to evaluate the ability of the paired sensors to quantify NO2 and O3 concentrations in mixture. Although the slopes of the response among our samples of three sensors of each type varied by as much as 37%, the individual response of the NO2-B43F sensors to NO2 and OX-B431 sensors to NO2 and O3 were highly linear over the concentrations studied (R2 ≥ 0.99). The NO2-B43F sensors responded minimally to O3 gas with statistically non-significant slopes of response. In mixtures of NO2 and O3, quantification of NO2 was generally accurate with overestimates up to 29%, compared to O3, which was generally underestimated by as much as 187%. We observed changes in sensor baseline over 4 days of experiments equivalent to 34 ppb O3, prompting an alternate method of calculating concentrations by baseline-correcting sensor signal. The baseline-correction method resulted in underestimates of NO2 up to 44% and decreases in the underestimation of O3 up to 107% for O3. Both methods for calculating gas concentrations progressively underestimated O3 concentrations as the ratio of NO2 signal to O3 signal increased. Our results suggest that paired NO2-B43F and OX-B431 sensors permit quantification of NO2 and O3 in mixture, but that O3 concentration estimates are less accurate and precise than those for NO2.


Assuntos
Técnicas Eletroquímicas/instrumentação , Dióxido de Nitrogênio/análise , Ozônio/análise , Poluentes Atmosféricos/análise , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos
4.
J Aerosol Sci ; 117: 74-84, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32226117

RESUMO

Protection of public health against pathogenic viruses transmitted through the airborne route requires effective sampling of airborne viruses for determination of their concentration and distribution. However, sampling viable airborne viruses is challenging as conventional bioaerosol sampling devices operate on inertia-based mechanisms that inherently have low sampling efficiency for virus aerosols in the ultrafine size range (< 100 nm). Herein, a Batch Adiabatic-expansion for Size Intensification by Condensation (BASIC) approach was developed for efficient sampling of virus aerosols. The BASIC utilizes adiabatic expansion in a supersaturated container to activate condensation of water vapor onto virus aerosol particles, thus amplifying the size of the particles by orders of magnitude. Using aerosolized MS2 bacteriophage, the BASIC's performance was evaluated and optimized both from the perspectives of physical size amplification as well as preservation of the viability of the MS2 bacteriophage. Experimental results show that one compression/expansion (C/E) cycle under a compression pressure of 103.5 kPa and water temperature of 25 °C was sufficient to increase the particle diameter from < 100 nm to > 1 µm; further increases in the number of C/E cycles neither increased particle number concentration nor diameter. An increase in compression pressure was associated with physical size amplification and a higher concentration of collected viable MS2. Water temperature of 40 °C was found to be the optimal for size amplification as well as viability preservation. No significant effect on particle size enlargement was observed by changing the dwell time after expansion. The results illustrate the BASIC's capability as a simple, quick and inexpensive tool for rapid sampling of viable airborne viruses.

5.
J Occup Environ Hyg ; 15(2): 87-98, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29083958

RESUMO

Development of an air quality monitoring network with high spatio-temporal resolution requires installation of a large number of air pollutant monitors. However, state-of-the-art monitors are costly and may not be compatible with wireless data logging systems. In this study, low-cost electro-chemical sensors manufactured by Alphasense Ltd. for detection of CO and oxidative gases (predominantly O3 and NO2) were evaluated. The voltages from three oxidative gas sensors and three CO sensors were recorded every 2.5 sec when exposed to controlled gas concentrations in a 0.125-m3 acrylic glass chamber. Electro-chemical sensors for detection of oxidative gases demonstrated sensitivity to both NO2 and O3 with similar voltages recorded when exposed to equivalent environmental concentrations of NO2 or O3 gases, when evaluated separately. There was a strong linear relationship between the recorded voltages and target concentrations of oxidative gases (R2 > 0.98) over a wide range of concentrations. Although a strong linear relationship was also observed for CO concentrations below 12 ppm, a saturation effect was observed wherein the voltage only changes minimally for higher CO concentrations (12-50 ppm). The nonlinear behavior of the CO sensors implied their unsuitability for environments where high CO concentrations are expected. Using a manufacturer-supplied shroud, sensors were tested at 2 different flow rates (0.25 and 0.5 Lpm) to mimic field calibration of the sensors with zero air and a span gas concentration (2 ppm NO2 or 15 ppm CO). As with all electrochemical sensors, the tested devices were subject to drift with a bias up to 20% after 9 months of continuous operation. Alphasense CO sensors were found to be a proper choice for occupational and environmental CO monitoring with maximum concentration of 12 ppm, especially due to the field-ready calibration capability. Alphasense oxidative gas sensors are usable only if it is valuable to know the sum of the NO2 and O3 concentrations.


Assuntos
Monóxido de Carbono/análise , Técnicas Eletroquímicas/instrumentação , Dióxido de Nitrogênio/análise , Ozônio/análise , Poluentes Atmosféricos/análise , Técnicas Eletroquímicas/economia , Monitoramento Ambiental/economia , Monitoramento Ambiental/instrumentação
6.
Inhal Toxicol ; 29(5): 197-205, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28651446

RESUMO

OBJECTIVE: To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. METHODS: C57BL/6 male mice (age 10.5 ± 2.4 weeks) were exposed for 20 min/day to E-cigarette aerosol generated by a Joyetech 510-T® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99mtechnetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. RESULTS: MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6 ± 5.2%, 7.5 ± 2.8% and 11.2 ± 5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ± 8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ± 4.6)% (p < .05). Serum cotinine levels were <0.5 ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. CONCLUSIONS: In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Depuração Mucociliar/efeitos dos fármacos , Nicotina/administração & dosagem , Nicotina/toxicidade , Propilenoglicol/administração & dosagem , Propilenoglicol/toxicidade , Administração por Inalação , Animais , Cotinina , Esquema de Medicação , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Air Waste Manag Assoc ; 66(4): 377-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745031

RESUMO

UNLABELLED: Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources. IMPLICATIONS: Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumaça/análise , Emissões de Veículos/análise , Biomassa , Florida , Modelos Teóricos , Saccharum
8.
Ann Work Expo Health ; 65(1): 127-135, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32968773

RESUMO

Exposure to respirable dust (RD; the mass fraction of inhaled particles that penetrate to the unciliated airways) is a major health concern in a variety of workplaces. While the estimation of personal exposure is an essential step in protecting worker health from aerosol hazards, the traditional method for assessing personal exposure to RD, suggested by the National Institute for Occupational Safety and Health (NIOSH method 0600), requires equipment that is heavy, bulky, noisy, and has the need of frequent calibration. The ultrasonic personal aerosol sampler (UPAS) is a new personal sampling technology designed to address some of these drawbacks associated with traditional sampling methods. In this study, we field tested and evaluated the performance of the UPAS for assessing worker exposure to RD in a taconite mine. Mineworkers (n = 39) from various job categories were recruited to wear both UPAS and NIOSH 0600 samplers on a work vest to estimate time-weighted exposure to RD. A strong linear relationship was observed (NIOSH method 0600 = 1.06 (UPAS) -9.22 µg m-3, r2 of 0.72, and Pearson correlation coefficient of 0.854). None of the workers were exposed to a RD concentration above the Occupational Safety and Health Administration permissible exposure limit (5 mg m-3). A Bland-Altman analysis revealed that 72% of the valid UPAS samples agreed within ±25% of the traditional method mean. The impact of job category on the correlation of the methods was not statistically significant. This work suggests that the UPAS may present a viable alternative for assessing personal exposure to RD in the workplace.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Exposição por Inalação/análise , Ferro , Exposição Ocupacional/análise , Silicatos , Ultrassom
9.
J Bodyw Mov Ther ; 26: 147-152, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33992236

RESUMO

INTRODUCTION: Decrease in cross-sectional thickness of lumbar multifidus (MF) muscles during prolonged low back pain episodes commonly occurs. Restoration of the MF muscle size can be an effective way of treating chronic low back pain (CLBP) patients. Traditionally, clinicians apply muscle stabilization exercises for these patients. Recent studies support the need for active strengthening exercises for treatment of the CLBP patients. OBJECTIVE: The MF muscles provide lumbar stability, and therefore we hypothesized that strengthening of these muscles can be more effective than the MF muscle stabilization exercises in restoration of the muscle size. DESIGN: Study design was a randomized allocation control trial with two groups of adult female CLBP patients (n = 12 each; age range of 20-45). Patients in the control group underwent stabilization exercises and the patients in the intervention group underwent the hip abductor strengthening exercises. SETTING: For all subjects of each group, the trials continued in 24 sessions distributed over 8 weeks and the MF muscles were measured in the beginning of the first session and one week after completion of the last session. MAIN OUTCOME MEASURES: Statistical significance (p-value) of the change in the average MF muscle thickness, pain, and disability scores along with for each group were estimated. RESULTS: Both regimens of exercises can significantly decrease the pain and disability: average pain and disability reductions of 46% (p-value of 0.001) and 33% (p-value of 0.02) via stabilization versus average pain and disability reductions of 65% (p-value of 0.001) and 59% (p-value of 0.001) via hip abductor strengthening. However, the hip abductor strengthening is the sole statistically significant exercise regimen (p-value of 0.014 vs 0.94) for increasing the MF muscle size. CONCLUSION: Replacement of the traditional stabilization exercises with the hip abductor strengthening exercises for effective treatment of female adults with CLBP is recommended.


Assuntos
Dor Lombar , Adulto , Estudos Transversais , Terapia por Exercício , Feminino , Humanos , Dor Lombar/terapia , Região Lombossacral , Músculos Paraespinais
10.
Chemosphere ; 256: 127063, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32438130

RESUMO

Inhalation of PM2.5, particles with an aerodynamic diameter <2.5 µm, from sea spray after crude oil spills could present serious health concerns. The addition of dispersants to effectively spread the crude oil throughout the water column has been practiced in recent years. Here, we investigated the possibility of an increase in the toxic content of fine PM after adding dispersant. A laboratory setup consisted of a vertical tank filled with seawater, 31.5 L airspace for aerosol sampling, and a bubble generating nozzle that aerosolized the oily droplets. Four different cases were studied: no slick, 0.5-mm-thick slick of pure crude oil (MC252 surrogate), dispersant (Corexit 9500A) mixed with crude oil at dispersant to oil ratio (DOR) 1:25, and DOR 1:100. The resulting airborne droplets were sampled for gravimetric and chemical analyses through development of a gas chromatography and mass spectrometry technique. Also, PM2.5 particles were size-fractioned into 13 size bins covering <60 nm to 12.1 µm using a low-pressure cascade impactor. The highest PM2.5 concentration (20.83 ± 5.21 µg/m3) was released from a slick of DOR 1:25, 8.83× greater than the case with pure crude oil. The average ratio of crude oil content from the slick of DOR 1:25 to the case with pure crude oil was 2.37 (1.83 vs 0.77 µg/m3) that decreased to 1.17 (0.90 vs 0.77 µg/m3) at DOR 1:100. For particles <220 nm, the resultant crude oil concentrations were 0.64 and 0.29 µg/m3 at DOR 1:25 and 1:100, both higher than 0.11 µg/m3 from the slick of pure crude oil.


Assuntos
Petróleo/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Aerossóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos , Material Particulado/análise , Poluição por Petróleo/análise , Tensoativos/química
11.
Sci Total Environ ; 654: 924-932, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453262

RESUMO

Airborne toxic compounds emitted from polluted seawater polluted after an oil spill raise health concerns when inhaled by humans or other species. Inhalation of these toxic compounds as volatile organic compounds (VOCs) or airborne fine particulate matter (PM) may cause serious pulmonary diseases, including lung cancer. Spraying chemical dispersants to enhance distribution of the crude oil into the water was employed extensively during the Deepwater Horizon spill. There is some evidence that dispersion of the crude oil decreased the emission rate of the VOCs but increased the emission rates of fine PM that may carry toxic compounds. In this study, the cancer risks and non-cancer hazards of the detected VOCs and particulates for spill-response workers were estimated with and without use of dispersant under action of breaking waves. A subchronic exposure scenario was modeled to address the inhalation health threat during initial phases of an oil spill response. A dosimetry model was used to estimate regional deposition of PM. Use of dispersant reduced benzene cancer risks from 57 to 37 excess lifetime cancer cases per million for 1 h of daily exposure that continues for 3 months. Adding dispersant resulted in emissions reductions of the lighter VOCs (up to 30% lower). However, hazard quotients (HQs) of the non-carcinogenic VOCs even after dispersant addition were above 1 meaning there are serious concerns about exposure to these VOCs. Inhalation of airborne particles emitted from the slick containing dispersant increased the total mass of deposited particles in upper respiratory regions compared to the slick of crude oil only. This study showed the application of dispersant onto the pollution slick increased the total mass burden to the human respiratory system about 10 times, an exploratory HQ analysis is presented to evaluate the potential health risk.


Assuntos
Poluição do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Lipídeos/análise , Neoplasias/epidemiologia , Exposição Ocupacional/efeitos adversos , Poluição por Petróleo/efeitos adversos , Tensoativos/análise , Humanos , Material Particulado/efeitos adversos , Medição de Risco , Água do Mar/química , Compostos Orgânicos Voláteis/efeitos adversos , Poluentes Químicos da Água/efeitos adversos
12.
Sci Rep ; 9(1): 7263, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086226

RESUMO

Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialised responses, such as ciliary beat frequency (CBF). Utilising annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Células Cultivadas , Cílios/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Humanos , Microscopia , Fumaça
13.
J Bodyw Mov Ther ; 22(1): 122-128, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332735

RESUMO

Ultrasonography imaging has been used as a non-invasive method to estimate the thickness and relative activities of the abdominal muscles in patients with lower back pain (LBP). However, the statistical reliability of US thickness measurements of abdominal muscles, including transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles during abdominal hollowing (AH) and abdominal bracing (AB) maneuvers has not been well-investigated. This study was performed on a total of 20 female subjects (10 with LBP and 10 without LBP) in the age range of 25-55 years to assess within-day and between-day reliability of the measurements. US measurements on maneuvers were repeated after two hours for the within-day reliability and after five days for the between-day reliability assessment. High intra-class correlation coefficient (ICC) values (>0.75) for within-day and between-day reliability assessments during AH maneuver were concluded. The ICC values were moderate for reliability assessment during AB. The ICC values for AH were greater than AB both for within- and between-day reliabilities. The small standard error of measurement and minimal detectable change values (0.16-0.78 and 0.44 to 2.15, respectively) were found for both AH and AB. We recommend real-time US imaging as a reliable way of determining the thicknesses of the TrA and IO muscle (and to some extent, EO muscle) for both healthy and LBP patients.


Assuntos
Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Dor Lombar/fisiopatologia , Ultrassonografia/normas , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Reprodutibilidade dos Testes
14.
J Aerosol Med Pulm Drug Deliv ; 29(1): 36-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25826647

RESUMO

PURPOSE: There is an urgent need for simple, inexpensive, noninvasive, and repeatable technique for the diagnosis of pulmonary diseases. Bronchoalveolar lavage, which is the gold standard diagnostic method for pulmonary diseases, does not meet any of these criteria. This study seeks to develop and optimize a novel technique of Internal Airway Percussion (IAP) to facilitate the collection and characterization of human respiratory system exhalates. METHODS: The IAP device transmits sound waves into the respiratory tract, thereby increasing the release of aerosolized particles within exhaled breath by vibrating both lungs. Nine combinations of sound wave frequencies and amplitudes were studied to determine optimal frequency and amplitude combination for maximum aerosol particle gain in healthy human subjects. RESULTS: Square-shaped sound waves generated at 15 Hz and 3 cm H2O resulted in 15 times greater total mass of collected particles in the first 2 min of sampling, and 1.2 to 1.5 times increase in count median diameter of the particles. CONCLUSIONS: IAP, optimized at the frequency of 15 Hz and the pressure amplitude of 3 cm H2O, increased the total mass of particles exhaled from the human respiratory system. IAP has a broad range of potential clinical applications for noninvasive diagnosis of lung diseases including asthma, cystic fibrosis, pneumonia, and lung cancer, along with improvement of mucus clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA