Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892192

RESUMO

Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.


Assuntos
Epigênese Genética , Fibroblastos , Fibrose , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Metilação de DNA
2.
Nat Genet ; 55(9): 1542-1554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580596

RESUMO

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.


Assuntos
Cromatina , Leucemia , Humanos , Cromatina/genética , Linhagem da Célula/genética , Hematopoese/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética
3.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289614

RESUMO

Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.

4.
J Tissue Eng Regen Med ; 14(1): 123-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677236

RESUMO

Adeno-associated viruses (AAV) have become one of the most promising tools for gene transfer in clinics. Among all the serotypes, AAV9 has been described as the most efficient for cardiac transduction. In order to achieve optimal therapeutic delivery in heart disease, we have explored AAV9 transduction efficiency in an infarcted heart using different routes of administration and promoters, including a cardiac-specific one. AAV9 vectors carrying luciferase or green fluorescence protein under the control of the ubiquitous elongation-factor-1-alpha or the cardiac-specific troponin-T (TnT) promoters were administered by intramyocardial or intravenous injection, either in healthy or myocardial-infarcted mice. The transduction efficacy and specificity, the time-course expression, and the safety of each vector were tested. High transgene expression levels were found in the heart, but not in the liver, of mice receiving AAV-TnT, which was significantly higher after intramyocardial injection regardless of ischemia-induction. On the contrary, high hepatic transgene expression levels were detected with the elongation-factor-1-alpha-promoter, independently of the administration route and heart damage. Moreover, tissue-specific green fluorescence protein expression was found in cardiomyocytes with the TnT vector, whereas minimal cardiac expression was detected with the ubiquitous one. Interestingly, we found that myocardial infarction greatly increased the transcriptional activity of AAV genomes. Our findings show that the use of cardiac promoters allows for specific and stable cardiac gene expression, which is optimal and robust when intramyocardially injected. Furthermore, our data indicate that the pathological status of the tissue can alter the transcriptional activity of AAV genomes, an aspect that should be carefully evaluated for clinical applications.


Assuntos
Dependovirus/genética , Isquemia Miocárdica/patologia , Animais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Genoma Viral , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Coração/fisiologia , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Distribuição Tecidual , Transdução Genética , Transgenes , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA