Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 19(5): 599-606, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24126927

RESUMO

Peripheral inflammation induces transmigration of interleukin (IL)-1ß-expressing neutrophils to the brain. We investigated the possibility that this presents a new route of immune-to-brain communication by assessing their role in sickness behaviors relevant for mood disorders. Mice treated with lipopolysaccharide (LPS) developed despair-like behavior, and administration of an anti-polymorphonuclear antibody abolished LPS-induced despair-like and asocial behaviors, which correlated with the levels of IL-1ß expression in the brain. These behavioral changes were directly mediated by the energy-regulating hormone, leptin. Increasing the concentration of endogenous leptin during obesity exacerbated, whereas its neutralization using a specific antiserum attenuated sickness behaviors and importantly the neutrophil transmigrating process. Our results indicate a role for peripheral neutrophils in conveying inflammatory signals to the brain, which appears to be dependent on the energy status of the organism. This constitutes a novel mechanism of immune-to-brain communication relevant to mood disorders.


Assuntos
Encéfalo/imunologia , Depressão/imunologia , Infecções/imunologia , Neuroimunomodulação/fisiologia , Neutrófilos/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Depressão/tratamento farmacológico , Fatores Imunológicos/farmacologia , Infecções/tratamento farmacológico , Interleucina-1beta/metabolismo , Leptina/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Neuroimunomodulação/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/imunologia
2.
Brain Res ; 1818: 148499, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499732

RESUMO

Astroglia play a crucial role in various aspects of neurodevelopment including building, maintaining, and modulating neuronal circuits that underly complex behaviours in the neocortex. Telencephalic regions exhibit sex differences in neuronal networks that arise early in development. Astroglia express receptors for gonadal hormones responsible for the organization of sex differences, such as estrogen, placing them in a key position to modulate sex differences in the development of neuronal networks. Astroglial cells express specific proteins related to their morphology, function, and maturation. We have previously shown that P7-P14 is a key transition period for neocortical astroglial maturation and that males reach a mature phenotype earlier than females, at P7. In this study, we investigated whether administration of perinatal estradiol to female mice is sufficient to masculinize astroglial protein and gene expression related to maturation that we previously observed at P7. We found that canonical astroglial markers like glial fibrillary acidic protein and glutamine synthetase are not affected by perinatal estrogen, but markers of astroglial maturation, Vimentin, Aldh1a1, Dio2, and the number of actively dividing astroglia are masculinized by perinatal estradiol administration. These findings suggest that sex differences in neocortical astroglial maturation are at least in-part due to the role of perinatal estrogen. Given the higher prevalence of neurodevelopmental disorders in males compared to females and the involvement of astroglia in virtually all neurodevelopmental disorders, further research is needed to determine other contributions to sex differences in neocortical astroglial cells.


Assuntos
Astrócitos , Neocórtex , Gravidez , Camundongos , Feminino , Animais , Masculino , Astrócitos/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Neurônios/fisiologia , Estradiol/farmacologia , Estradiol/metabolismo
4.
Neurochem Int ; 48(1): 31-42, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16213061

RESUMO

Subthreshold electrical stimulation of the amygdala (kindling) activates neuronal pathways increasing the expression of several neuropeptides including thyrotropin releasing-hormone (TRH). Partial kindling enhances TRH expression and the activity or its inactivating ectoenzyme; once kindling is established (stage V), TRH and its mRNA levels are further increased but TRH-binding and pyroglutamyl aminopeptidase II (PPII) activity decreased in epileptogenic areas. To determine whether variations in TRH receptor binding or PPII activity are due to regulation of their synthesis, mRNA levels of TRH receptors (R1, R2) and PPII were semi-quantified by RT-PCR in amygdala, frontal cortex and hippocampus of kindled rats sacrificed at stage II or V. Increased mRNA levels of PPII were found at stage II in amygdala and frontal cortex, and of pro-TRH and TRH-R2, in amygdala and hippocampus. At stage V, pro-TRH mRNA levels increased and those of PPII, decreased in the three regions; TRH-R2 mRNA levels diminished in amygdala and frontal cortex and of TRH-R1 only in amygdala. In situ hybridization analyses revealed, at stage II, enhanced TRH-R1 mRNA levels in dentate gyrus and amygdala while decreased in piriform cortex; those of TRH-R2 increased in amygdala, CA2, dentate gyrus, piriform cortex, thalamus and subiculum and of PPII, in CAs and piriform cortex. In contrast, at stage V decreased expression of TRH-R1 occurred in amygdala, CA2/3, dentate gyrus and piriform cortex; of TRH-R2 in CA2, thalamus and piriform cortex, and of PPII in CA2, and amygdala. The magnitude of changes differed between ipsi and contralateral side. These results support a trans-synaptic modulation of all elements involved in TRH transmission in conditions that stimulate the activity of TRHergic neurons. They show that reported changes in PPII activity or TRH-binding caused by kindling relate to regulation of the expression of TRH receptors and degrading enzyme.


Assuntos
Tonsila do Cerebelo/fisiologia , Regulação da Expressão Gênica/fisiologia , Excitação Neurológica , Hormônio Liberador de Tireotropina/fisiologia , Animais , Sequência de Bases , Primers do DNA , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA