Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Robot AI ; 8: 612415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026855

RESUMO

Current neurorehabilitation models primarily rely on extended hospital stays and regular therapy sessions requiring close physical interactions between rehabilitation professionals and patients. The current COVID-19 pandemic has challenged this model, as strict physical distancing rules and a shift in the allocation of hospital resources resulted in many neurological patients not receiving essential therapy. Accordingly, a recent survey revealed that the majority of European healthcare professionals involved in stroke care are concerned that this lack of care will have a noticeable negative impact on functional outcomes. COVID-19 highlights an urgent need to rethink conventional neurorehabilitation and develop alternative approaches to provide high-quality therapy while minimizing hospital stays and visits. Technology-based solutions, such as, robotics bear high potential to enable such a paradigm shift. While robot-assisted therapy is already established in clinics, the future challenge is to enable physically assisted therapy and assessments in a minimally supervized and decentralized manner, ideally at the patient's home. Key enablers are new rehabilitation devices that are portable, scalable and equipped with clinical intelligence, remote monitoring and coaching capabilities. In this perspective article, we discuss clinical and technological requirements for the development and deployment of minimally supervized, robot-assisted neurorehabilitation technologies in patient's homes. We elaborate on key principles to ensure feasibility and acceptance, and on how artificial intelligence can be leveraged for embedding clinical knowledge for safe use and personalized therapy adaptation. Such new models are likely to impact neurorehabilitation beyond COVID-19, by providing broad access to sustained, high-quality and high-dose therapy maximizing long-term functional outcomes.

2.
IEEE Trans Neural Syst Rehabil Eng ; 28(3): 710-719, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031944

RESUMO

This paper presents a novel omnidirectional platform for gait rehabilitation of people with hemiparesis after stroke. The mobile platform, henceforth the "walker", allows unobstructed pelvic motion during walking, helps the user maintain balance and prevents falls. The system aids mobility actively by combining three types of therapeutic intervention: forward propulsion of the pelvis, controlled body weight support, and functional electrical stimulation (FES) for compensation of deficits in angular motion of the joints. FES is controlled using gait data extracted from a set of inertial measurement units (IMUs) worn by the user. The resulting closed-loop FES system synchronizes stimulation with the gait cycle phases and automatically adapts to the variations in muscle activation caused by changes in residual muscle activity and spasticity. A pilot study was conducted to determine the potential outcomes of the different interventions. One chronic stroke survivor underwent five sessions of gait training, each one involving a total of 30 minutes using the walker and FES system. The patient initially exhibited severe anomalies in joint angle trajectories on both the paretic and the non-paretic side. With training, the patient showed progressive increase in cadence and self-selected gait speed, along with consistent decrease in double-support time. FES helped correct the paretic foot angle during swing phase, and likely was a factor in observed improvements in temporal gait symmetry. Although the experiments showed favorable changes in the paretic trajectories, they also highlighted the need for intervention on the non-paretic side.


Assuntos
Terapia por Estimulação Elétrica , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Elétrica , Marcha , Humanos , Paresia , Projetos Piloto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Caminhada
3.
IEEE Trans Neural Syst Rehabil Eng ; 27(11): 2305-2314, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31567098

RESUMO

Gait anomalies give rise to several clinical problems in stroke survivors, which restrict their functional mobility and have a negative impact on their quality of life. Robotics-aided gait training post-stroke has proven capable of improving patients' functional walking, but so far it has not performed significantly better than conventional therapy. We hypothesize that an exoskeleton-based training program, aimed at correcting deficits in the leg joints' movement, could produce greater improvements in gait function than conventional therapy. As a first step towards testing this hypothesis, we designed an exoskeleton control to correct a typical kinematic deficit post-stroke, namely, reduced knee flexion on the paretic side during swing. The proposed control attempts to minimize this deficit by delivering assistive torque synchronized with the continuous phase of the patient's gait. Nine healthy male participants walked in a unilateral cable-driven exoskeleton while subject to an artificial knee flexion impairment produced by a custom-made knee brace. The experiments employed a treadmill featuring a variable-velocity control to allow self-selected gait speed. The artificial impairment by itself caused a significant reduction in peak flexion angle (p = 0.000129). Exoskeleton assistance compensated most of the knee flexion deficit, yielding no significant difference with unrestricted flexion (p = 0.3393). No significant changes in self-selected gait speed or stride frequency were detected. The proposed control can be expanded to correct motion deficits in other joints at different stages of the gait cycle.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Marcha , Adulto , Algoritmos , Fenômenos Biomecânicos , Voluntários Saudáveis , Humanos , Articulações , Articulação do Joelho , Perna (Membro) , Masculino , Amplitude de Movimento Articular , Robótica , Torque , Velocidade de Caminhada
4.
IEEE Int Conf Rehabil Robot ; 2019: 694-700, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374712

RESUMO

We present a novel control method for an omnidirectional robotic platform for gait training. This mobile platform or "walker" provides trunk support and allows unrestricted motion of the pelvis simultaneously. In addition to helping the user maintain balance and preventing falls, the walker combines two types of therapeutic intervention: forward propulsion of the trunk and partial body weight support (BWS). The core of the walker's control is an admittance controller that maximizes the platform's horizontal mobility by optimizing the virtual mass of the admittance model. Said mass represents the best tradeoff between a low-frequency oscillation mode that becomes more damped as the virtual mass decreases, and a high-frequency mode that becomes less damped simultaneously and hence could destabilize the system. Forward propulsion of the trunk is aided by a horizontal force that is modulated with the patient's gait speed and turning rate to ensure easy adaptation. BWS is provided by a second, independent admittance controller that generates a spring-like upward force. In an initial study, a stroke patient was able to walk stably in the platform, as evidenced by the absence of oscillations associated with an excessively low virtual mass. A progressive increase in the patient's self-selected speed, along with greater uniformity in the instantaneous velocity, suggest that forward propulsion was effective in compensating the patient's own propulsion deficit.


Assuntos
Marcha/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Peso Corporal , Doença Crônica , Retroalimentação , Feminino , Humanos , Modelos Lineares , Torque
5.
Proc Inst Mech Eng H ; 229(1): 52-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25655955

RESUMO

In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque.


Assuntos
Perna (Membro)/fisiologia , Movimento/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Aparelhos Ortopédicos , Robótica/métodos , Adaptação Fisiológica/fisiologia , Adulto , Simulação por Computador , Retroalimentação , Retroalimentação Fisiológica/fisiologia , Humanos , Masculino , Sistemas Homem-Máquina , Modelos Biológicos , Oscilometria/métodos
6.
IEEE Trans Neural Syst Rehabil Eng ; 20(1): 68-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22271684

RESUMO

A new method of lower-limb exoskeleton control aimed at improving the agility of leg-swing motion is presented. In the absence of control, an exoskeleton's mechanism usually hinders agility by adding mechanical impedance to the legs. The uncompensated inertia of the exoskeleton will reduce the natural frequency of leg swing, probably leading to lower step frequency during walking as well as increased metabolic energy consumption. The proposed controller emulates inertia compensation by adding a feedback loop consisting of low-pass filtered angular acceleration multiplied by a negative gain. This gain simulates negative inertia in the low-frequency range. The resulting controller combines two assistive effects: increasing the natural frequency of the lower limbs and performing net work per swing cycle. The controller was tested on a statically mounted exoskeleton that assists knee flexion and extension. Subjects performed movement sequences, first unassisted and then using the exoskeleton, in the context of a computer-based task resembling a race. In the exoskeleton's baseline state, the frequency of leg swing and the mean angular velocity were consistently reduced. The addition of inertia compensation enabled subjects to recover their normal frequency and increase their selected angular velocity. The work performed by the exoskeleton was evidenced by catch trials in the protocol.


Assuntos
Extremidade Inferior/fisiologia , Aparelhos Ortopédicos , Algoritmos , Análise de Variância , Fenômenos Biomecânicos , Simulação por Computador , Interpretação Estatística de Dados , Metabolismo Energético/fisiologia , Desenho de Equipamento , Retroalimentação Fisiológica/fisiologia , Humanos , Joelho/fisiologia , Perna (Membro)/fisiologia , Movimento/fisiologia , Robótica , Software , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA