Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062609

RESUMO

The collection of delicate deep-sea specimens of biological interest with remotely operated vehicle (ROV) industrial grippers and tools is a long and expensive procedure. Industrial grippers were originally designed for heavy manipulation tasks, while sampling specimens requires dexterity and precision. We describe the grippers and tools commonly used in underwater sampling for scientific purposes, systematically review the state of the art of research in underwater gripping technologies, and identify design trends. We discuss the possibility of executing typical manipulations of sampling procedures with commonly used grippers and research prototypes. Our results indicate that commonly used grippers ensure that the basic actions either of gripping or caging are possible, and their functionality is extended by holding proper tools. Moreover, the approach of the research status seems to have changed its focus in recent years: from the demonstration of the validity of a specific technology (actuation, transmission, sensing) for marine applications, to the solution of specific needs of underwater manipulation. Finally, we summarize the environmental and operational requirements that should be considered in the design of an underwater gripper.


Assuntos
Robótica , Desenho de Equipamento , Força da Mão , Manejo de Espécimes , Tecnologia
3.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214378

RESUMO

In order to develop a gripping system or control strategy that improves scientific sampling procedures, knowledge of the process and the consequent definition of requirements is fundamental. Nevertheless, factors influencing sampling procedures have not been extensively described, and selected strategies mostly depend on pilots' and researchers' experience. We interviewed 17 researchers and remotely operated vehicle (ROV) technical operators, through a formal questionnaire or in-person interviews, to collect evidence of sampling procedures based on their direct field experience. We methodologically analyzed sampling procedures to extract single basic actions (called atomic manipulations). Available equipment, environment and species-specific features strongly influenced the manipulative choices. We identified a list of functional and technical requirements for the development of novel end-effectors for marine sampling. Our results indicate that the unstructured and highly variable deep-sea environment requires a versatile system, capable of robust interactions with hard surfaces such as pushing or scraping, precise tuning of gripping force for tasks such as pulling delicate organisms away from hard and soft substrates, and rigid holding, as well as a mechanism for rapidly switching among external tools.


Assuntos
Robótica , Desenho de Equipamento , Força da Mão , Humanos , Robótica/métodos , Especificidade da Espécie , Manejo de Espécimes
4.
Sensors (Basel) ; 21(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072452

RESUMO

Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950-2020), evidencing a sharp research increase in 2003-2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption.

5.
Sensors (Basel) ; 20(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466261

RESUMO

Deep-sea environmental datasets are ever-increasing in size and diversity, as technological advances lead monitoring studies towards long-term, high-frequency data acquisition protocols. This study presents examples of pre-analysis data treatment steps applied to the environmental time series collected by the Internet Operated Deep-sea Crawler "Wally" during a 7-year deployment (2009-2016) in the Barkley Canyon methane hydrates site, off Vancouver Island (BC, Canada). Pressure, temperature, electrical conductivity, flow, turbidity, and chlorophyll data were subjected to different standardizing, normalizing, and de-trending methods on a case-by-case basis, depending on the nature of the treated variable and the range and scale of the values provided by each of the different sensors. The final pressure, temperature, and electrical conductivity (transformed to practical salinity) datasets are ready for use. On the other hand, in the cases of flow, turbidity, and chlorophyll, further in-depth processing, in tandem with data describing the movement and position of the crawler, will be needed in order to filter out all possible effects of the latter. Our work evidences challenges and solutions in multiparametric data acquisition and quality control and ensures that a big step is taken so that the available environmental data meet high quality standards and facilitate the production of reliable scientific results.

6.
Sensors (Basel) ; 20(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245204

RESUMO

Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.


Assuntos
Biologia Marinha/métodos , Inteligência Artificial , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos
7.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012976

RESUMO

An understanding of marine ecosystems and their biodiversity is relevant to sustainable use of the goods and services they offer. Since marine areas host complex ecosystems, it is important to develop spatially widespread monitoring networks capable of providing large amounts of multiparametric information, encompassing both biotic and abiotic variables, and describing the ecological dynamics of the observed species. In this context, imaging devices are valuable tools that complement other biological and oceanographic monitoring devices. Nevertheless, large amounts of images or movies cannot all be manually processed, and autonomous routines for recognizing the relevant content, classification, and tagging are urgently needed. In this work, we propose a pipeline for the analysis of visual data that integrates video/image annotation tools for defining, training, and validation of datasets with video/image enhancement and machine and deep learning approaches. Such a pipeline is required to achieve good performance in the recognition and classification tasks of mobile and sessile megafauna, in order to obtain integrated information on spatial distribution and temporal dynamics. A prototype implementation of the analysis pipeline is provided in the context of deep-sea videos taken by one of the fixed cameras at the LoVe Ocean Observatory network of Lofoten Islands (Norway) at 260 m depth, in the Barents Sea, which has shown good classification results on an independent test dataset with an accuracy value of 76.18% and an area under the curve (AUC) value of 87.59%.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Ecossistema , Gravação em Vídeo/métodos , Animais , Organismos Aquáticos/classificação , Aprendizado Profundo , Humanos , Aumento da Imagem/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Oceanos e Mares
8.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455611

RESUMO

Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station "Mare Chiara", and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).


Assuntos
Ecossistema , Oceanografia , Animais , Monitoramento Ambiental , Feminino , Cavalos , Humanos , Mar Mediterrâneo
9.
Sensors (Basel) ; 20(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158174

RESUMO

Imaging technologies are being deployed on cabled observatory networks worldwide. They allow for the monitoring of the biological activity of deep-sea organisms on temporal scales that were never attained before. In this paper, we customized Convolutional Neural Network image processing to track behavioral activities in an iconic conservation deep-sea species-the bubblegum coral Paragorgia arborea-in response to ambient oceanographic conditions at the Lofoten-Vesterålen observatory. Images and concomitant oceanographic data were taken hourly from February to June 2018. We considered coral activity in terms of bloated, semi-bloated and non-bloated surfaces, as proxy for polyp filtering, retraction and transient activity, respectively. A test accuracy of 90.47% was obtained. Chronobiology-oriented statistics and advanced Artificial Neural Network (ANN) multivariate regression modeling proved that a daily coral filtering rhythm occurs within one major dusk phase, being independent from tides. Polyp activity, in particular extrusion, increased from March to June, and was able to cope with an increase in chlorophyll concentration, indicating the existence of seasonality. Our study shows that it is possible to establish a model for the development of automated pipelines that are able to extract biological information from times series of images. These are helpful to obtain multidisciplinary information from cabled observatory infrastructures.


Assuntos
Antozoários/fisiologia , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Periodicidade , Animais
10.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384795

RESUMO

Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009-2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009-2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of -0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (-0.15 mg·l-1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.

11.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183233

RESUMO

This paper presents the technological developments and the policy contexts for the project "Autonomous Robotic Sea-Floor Infrastructure for Bentho-Pelagic Monitoring" (ARIM). The development is based on the national experience with robotic component technologies that are combined and merged into a new product for autonomous and integrated ecological deep-sea monitoring. Traditional monitoring is often vessel-based and thus resource demanding. It is economically unviable to fulfill the current policy for ecosystem monitoring with traditional approaches. Thus, this project developed platforms for bentho-pelagic monitoring using an arrangement of crawler and stationary platforms at the Lofoten-Vesterålen (LoVe) observatory network (Norway). Visual and acoustic imaging along with standard oceanographic sensors have been combined to support advanced and continuous spatial-temporal monitoring near cold water coral mounds. Just as important is the automatic processing techniques under development that have been implemented to allow species (or categories of species) quantification (i.e., tracking and classification). At the same time, real-time outboard processed three-dimensional (3D) laser scanning has been implemented to increase mission autonomy capability, delivering quantifiable information on habitat features (i.e., for seascape approaches). The first version of platform autonomy has already been tested under controlled conditions with a tethered crawler exploring the vicinity of a cabled stationary instrumented garage. Our vision is that elimination of the tether in combination with inductive battery recharge trough fuel cell technology will facilitate self-sustained long-term autonomous operations over large areas, serving not only the needs of science, but also sub-sea industries like subsea oil and gas, and mining.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Oceanografia/métodos , Oceanos e Mares , Acústica/instrumentação , Animais , Antozoários/fisiologia , Humanos , Robótica/instrumentação , Gravação em Vídeo/métodos
12.
Environ Sci Technol ; 53(12): 6616-6631, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31074981

RESUMO

Increasing interest in the acquisition of biotic and abiotic resources from within the deep sea (e.g., fisheries, oil-gas extraction, and mining) urgently imposes the development of novel monitoring technologies, beyond the traditional vessel-assisted, time-consuming, high-cost sampling surveys. The implementation of permanent networks of seabed and water-column-cabled (fixed) and docked mobile platforms is presently enforced, to cooperatively measure biological features and environmental (physicochemical) parameters. Video and acoustic (i.e., optoacoustic) imaging are becoming central approaches for studying benthic fauna (e.g., quantifying species presence, behavior, and trophic interactions) in a remote, continuous, and prolonged fashion. Imaging is also being complemented by in situ environmental-DNA sequencing technologies, allowing the traceability of a wide range of organisms (including prokaryotes) beyond the reach of optoacoustic tools. Here, we describe the different fixed and mobile platforms of those benthic and pelagic monitoring networks, proposing at the same time an innovative roadmap for the automated computing of hierarchical ecological information on deep-sea ecosystems (i.e., from single species' abundance and life traits to community composition, and overall biodiversity).


Assuntos
Biodiversidade , Ecossistema , Mineração
13.
Sensors (Basel) ; 18(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673224

RESUMO

Autonomous Underwater Vehicles (AUV) are proving to be a promising platform design for multidisciplinary autonomous operability with a wide range of applications in marine ecology and geoscience. Here, two novel contributions towards increasing the autonomous navigation capability of a new AUV prototype (the Guanay II) as a mix between a propelled vehicle and a glider are presented. Firstly, a vectorial propulsion system has been designed to provide full vehicle maneuverability in both horizontal and vertical planes. Furthermore, two controllers have been designed, based on fuzzy controls, to provide the vehicle with autonomous navigation capabilities. Due to the decoupled system propriety, the controllers in the horizontal plane have been designed separately from the vertical plane. This class of non-linear controllers has been used to interpret linguistic laws into different zones of functionality. This method provided good performance, used as interpolation between different rules or linear controls. Both improvements have been validated through simulations and field tests, displaying good performance results. Finally, the conclusion of this work is that the Guanay II AUV has a solid controller to perform autonomous navigation and carry out vertical immersions.

14.
BMC Genomics ; 18(1): 622, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814267

RESUMO

BACKGROUND: The Norway lobster, Nephrops norvegicus, is economically important in European fisheries and is a key organism in local marine ecosystems. Despite multi-faceted scientific interest in this species, our current knowledge of genetic resources in this species remains very limited. Here, we generated a reference de novo transcriptome for N. norvegicus from multiple tissues in both sexes. Bioinformatic analyses were conducted to detect transcripts that were expressed exclusively in either males or females. Patterns were validated via RT-PCR. RESULTS: Sixteen N. norvegicus libraries were sequenced from immature and mature ovary, testis and vas deferens (including the masculinizing androgenic gland). In addition, eyestalk, brain, thoracic ganglia and hepatopancreas tissues were screened in males and both immature and mature females. RNA-Sequencing resulted in >600 million reads. De novo assembly that combined the current dataset with two previously published libraries from eyestalk tissue, yielded a reference transcriptome of 333,225 transcripts with an average size of 708 base pairs (bp), with an N50 of 1272 bp. Sex-specific transcripts were detected primarily in gonads followed by hepatopancreas, brain, thoracic ganglia, and eyestalk, respectively. Candidate transcripts that were expressed exclusively either in males or females were highlighted and the 10 most abundant ones were validated via RT-PCR. Among the most highly expressed genes were Serine threonine protein kinase in testis and Vitellogenin in female hepatopancreas. These results align closely with gene annotation results. Moreover, a differential expression heatmap showed that the majority of differentially expressed transcripts were identified in gonad and eyestalk tissues. Results indicate that sex-specific gene expression patterns in Norway lobster are controlled by differences in gene regulation pattern between males and females in somatic tissues. CONCLUSIONS: The current study presents the first multi-tissue reference transcriptome for the Norway lobster that can be applied to future biological, wild restocking and fisheries studies. Sex-specific markers were mainly expressed in males implying that males may experience stronger selection than females. It is apparent that differential expression is due to sex-specific gene regulatory pathways that are present in somatic tissues and not from effects of genes located on heterogametic sex chromosomes. The N. norvegicus data provide a foundation for future gene-based reproductive studies.


Assuntos
Perfilação da Expressão Gênica , Nephropidae/genética , Caracteres Sexuais , Animais , Feminino , Marcadores Genéticos/genética , Genômica , Masculino , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Exp Biol ; 220(Pt 24): 4624-4633, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29051227

RESUMO

Animals fight over resources such as mating partners, territory, food or shelter and repeated contests lead to stable social hierarchies in different phyla. The group dynamics of hierarchy formation are not characterized in the Norway lobster (Nephrops norvegicus). Lobsters spend most of the day in burrows and forage outside of them according to a diel (i.e. 24 h-based) activity rhythm. Here, we use a linear and generalized mixed model approach to analyse, in seven groups of four male lobsters, the formation of dominance hierarchies and rank-related changes in burrowing behaviour. We show that hierarchies emerge within 1-3 days and increase in steepness over a period of 5 days, while rank changes and number of fights gradually decrease over a 5-day period. The rank position determined by open area fights predicts the outcome of fights over burrows, the time spent in burrows, and the locomotor activity levels. Dominant lobsters are more likely to evict subordinate lobsters from their burrows and are more successful in defending their own burrows. They spend more time in burrows and display lower levels of locomotor activity outside the burrow. Lobsters do not change their diel activity rhythms as a result of a change in rank, and all tested individuals showed higher activity at night and dusk compared with dawn and daytime. We discuss how behavioural changes in burrowing behaviour could lead to rank-related benefits such as reduced exposure to predators and energy savings.


Assuntos
Comportamento Animal , Nephropidae/fisiologia , Animais , Ritmo Circadiano , Comportamento Competitivo , Hierarquia Social , Masculino
16.
PLoS One ; 19(7): e0297730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950009

RESUMO

Oceanographic connectivity in an effective network of protected areas is crucial for restoring and stabilising marine populations. However, temporal variability in connectivity is rarely considered as a criterion in designing and evaluating marine conservation planning. In this study, indicators were defined to characterise the temporal variability in occurrence, flux, and frequency of connectivity in a northwestern Mediterranean Sea area. Indicators were tested on semi-theoretically-estimated connections provided by the runs of a passive particle transport model in a climatological year and in three years between 2006-2020, showing large deviation from the climatological year. The indicators allowed comparing the temporal variability in connectivity of four zones, highlighted differences in connectivity due to their locations and the mesoscale hydrodynamics, and identified areas that require further investigation. The three indicators also showed that the temporal variability in connectivity was influenced by the duration and depth of particle transport, although no consistent pattern was observed in the indicator variations of the compared zones. Provided that specific objectives will be given when parameterising transport models (i.e., selection of focus species and time period), indicators of temporal variability in connectivity have potential to support spatial conservation planning, prioritise the protection of marine resources, and measure the effectiveness of Marine Protected Areas, in line with a long-term vision of ocean management.


Assuntos
Conservação dos Recursos Naturais , Mar Mediterrâneo , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Ecossistema , Hidrodinâmica
17.
Life (Basel) ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38929660

RESUMO

Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.

18.
Adv Mar Biol ; 64: 65-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23668588

RESUMO

The Norway lobster is one of the most important commercial crustaceans in Europe. A detailed knowledge of the behaviour of this species is crucial in order to optimize fishery yields, improve sustainability of fisheries, and identify man-made environmental threats. Due to the cryptic life-style in burrows, the great depth and low-light condition of their habitat, studies of the behaviour of this species in its natural environment are challenging. Here, we first provide an overview of the sensory modalities (vision, chemoreception, and mechanoreception) of Nephrops norvegicus. We focus particularly on the role of the chemical and mechanical senses in eliciting and steering spatial orientation behaviours. We then concentrate on recent research in social behaviour and biological rhythms of Nephrops. A combination of laboratory approaches and newly developed tracking technologies has led to a better understanding of aggressive interactions, reproductive behaviours, activity cycles, and burrow-related behaviours. Gaps in our knowledge are identified and suggestions for future research are provided.


Assuntos
Comportamento Animal/fisiologia , Decápodes/anatomia & histologia , Decápodes/fisiologia , Órgãos dos Sentidos/fisiologia , Animais , Ecossistema
19.
Sensors (Basel) ; 13(11): 14740-53, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177726

RESUMO

Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented "3D Thin-Plate Spline" warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms.


Assuntos
Colorimetria/métodos , Monitoramento Ambiental/métodos , Peixes/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Gravação em Vídeo/métodos , Animais , Colorimetria/instrumentação , Monitoramento Ambiental/instrumentação , Análise de Componente Principal , Gravação em Vídeo/instrumentação
20.
Biology (Basel) ; 12(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37372059

RESUMO

Competitive interactions come in a variety of forms and may be modulated by the size and number of individuals involved, and/or the resources available. Here, intra- and interspecific competitive behaviours for food (i.e., foraging/food search and feeding/food ingestion) were experimentally characterized and quantified in four co-existing deep-sea benthic species. Three sea stars (Ceramaster granularis, Hippasteria phrygiana, and Henricia lisa) and one gastropod (Buccinum scalariforme) from the bathyal Northwest Atlantic were investigated using video trials in darkened laboratory conditions. A range of competitive or cooperative behaviours occurred, depending on species (conspecific or heterospecific), comparative body size, and the number of individuals involved. Contrary to expectations, small individuals (or smaller species) were not always outcompeted by larger individuals (or larger species) when foraging and feeding. Moreover, faster species did not always outcompete slower ones while scavenging. Overall, this study sheds new light on scavenging strategies of co-existing deep-sea benthic species in food-limited bathyal environments, based on complex behavioural inter- and intraspecific relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA