Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Anaesthesiol Scand ; 63(2): 222-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30132806

RESUMO

BACKGROUND: One-lung ventilation (OLV) with induced capnothorax carries the risk of severely impaired ventilation and circulation. Optimal PEEP may mitigate the physiological perturbations during these conditions. METHODS: Right-sided OLV with capnothorax (16 cm H2 O) on the left side was initiated in eight anesthetized, muscle-relaxed piglets. A recruitment maneuver and a decremental PEEP titration from PEEP 20 cm H2 O to zero end-expiratory pressure (ZEEP) was performed. Regional ventilation and perfusion were studied with electrical impedance tomography and computer tomography of the chest was used. End-expiratory lung volume and hemodynamics were recorded and. RESULTS: PaO2 peaked at PEEP 12 cm H2 O (49 ± 14 kPa) and decreased to 11 ± 5 kPa at ZEEP (P < 0.001). PaCO2 was 9.5 ± 1.3 kPa at 20 cm H2 O PEEP and did not change when PEEP step-wise was reduced to 12 cm H2 O PaCO2. At lower PEEP, PaCO2 increased markedly. The ventilatory driving pressure was lowest at PEEP 14 cm H2 O (19.6 ± 5.8 cm H2 O) and increased to 38.3 ± 6.1 cm H2 O at ZEEP (P < 0.001). When reducing PEEP below 12-14 cm H2 O ventilation shifted from the dependent to the nondependent regions of the ventilated lung (P = 0.003), and perfusion shifted from the ventilated to the nonventilated lung (P = 0.02). CONCLUSION: Optimal PEEP was 12-18 cm H2 O and probably relates to capnothorax insufflation pressure. With suboptimal PEEP, ventilation/perfusion mismatch in the ventilated lung and redistribution of blood flow to the nonventilated lung occurred.


Assuntos
Insuflação/métodos , Ventilação Monopulmonar/métodos , Pico do Fluxo Expiratório , Anestesia , Animais , Procedimentos Cirúrgicos Cardíacos , Impedância Elétrica , Insuflação/efeitos adversos , Ventilação Monopulmonar/efeitos adversos , Consumo de Oxigênio , Músculos Respiratórios/fisiologia , Suínos , Tórax/diagnóstico por imagem , Tórax/fisiologia , Volume de Ventilação Pulmonar , Tomografia
2.
Crit Care Med ; 43(10): e404-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26131598

RESUMO

OBJECTIVE: After lung recruitment, lateral decubitus and differential lung ventilation may enable the titration and application of optimum-selective positive end-expiratory pressure values for the dependent and nondependent lungs. We aimed at compare the effects of optimum-selective positive end-expiratory pressure with optimum global positive end-expiratory pressure on regional collapse and aeration distribution in an experimental model of acute respiratory distress syndrome. DESIGN: Prospective laboratory investigation. SETTING: University animal research laboratory. SUBJECTS: Seven piglets. INTERVENTIONS: A one-hit injury acute respiratory distress syndrome model was established by repeated lung lavages. After replacing the tracheal tube by a double-lumen one, we initiated lateral decubitus and differential ventilation. After maximum-recruitment maneuver, decremental positive end-expiratory pressure titration was performed. The positive end-expiratory pressure corresponding to maximum dynamic compliance was defined globally (optimum global positive end-expiratory pressure) and for each individual lung (optimum-selective positive end-expiratory pressure). After new maximum-recruitment maneuver, two steps were performed in randomized order (15 min each): ventilation applying the optimum global positive end-expiratory pressure and the optimum-selective positive end-expiratory pressure. CT scans were acquired at end expiration and end inspiration. MEASUREMENTS AND MAIN RESULTS: Aeration homogeneity was evaluated as a nondependent/dependent ratio (percent of total gas content in upper lung/percent of total gas content in lower lung) and tidal recruitment as the difference in the percent mass of nonaerated tissue between expiration and inspiration. At the end of the 15-minute optimum-selective positive end-expiratory pressure, compared with the optimum global positive end-expiratory pressure, resulted in 1) decrease in the percent mass of collapse in the lower lung at expiratory CT (19% ± 15% vs 4% ± 5%; p = 0.03); 2) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-expiratory-CT and optimum-selective positive end-expiratory pressure-expiratory-CT (3.7 ± 1.2 vs 0.8 ± 0.5; p = 0.01); 3) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-inspiratory-CT and optimum-selective positive end-expiratory pressure-inspiratory-CT (2.8 ± 1.1 vs 0.6 ± 0.3; p = 0.01); and 4) less tidal recruitment (p = 0.049). CONCLUSIONS: After maximum lung recruitment, lateral decubitus and differential lung ventilation enabled the titration of optimum-selective positive end-expiratory pressure values for the dependent and the nondependent lungs, made possible the application of an optimized regional open lung approach, promoted better aeration distribution, and minimized lung tissue inhomogeneities.


Assuntos
Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Animais , Modelos Animais de Doenças , Postura , Estudos Prospectivos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA