Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(5): 1081-1092, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517452

RESUMO

OBJECTIVES: Regular quality-assured WGS with antimicrobial resistance (AMR) and epidemiological data of patients is imperative to elucidate the shifting gonorrhoea epidemiology, nationally and internationally. We describe the dynamics of the gonococcal population in 11 cities in Brazil between 2017 and 2020 and elucidate emerging and disappearing gonococcal lineages associated with AMR, compare to Brazilian WGS and AMR data from 2015 to 2016, and explain recent changes in gonococcal AMR and gonorrhoea epidemiology. METHODS: WGS was performed using Illumina NextSeq 550 and genomes of 623 gonococcal isolates were used for downstream analysis. Molecular typing and AMR determinants were obtained and links between genomic lineages and AMR (determined by agar dilution/Etest) examined. RESULTS: Azithromycin resistance (15.6%, 97/623) had substantially increased and was mainly explained by clonal expansions of strains with 23S rRNA C2611T (mostly NG-STAR CC124) and mtr mosaics (mostly NG-STAR CC63, MLST ST9363). Resistance to ceftriaxone and cefixime remained at the same levels as in 2015-16, i.e. at 0% and 0.2% (1/623), respectively. Regarding novel gonorrhoea treatments, no known zoliflodacin-resistance gyrB mutations or gepotidacin-resistance gyrA mutations were found. Genomic lineages and sublineages showed a phylogenomic shift from sublineage A5 to sublineages A1-A4, while isolates within lineage B remained diverse in Brazil. CONCLUSIONS: Azithromycin resistance, mainly caused by 23S rRNA C2611T and mtrD mosaics/semi-mosaics, had substantially increased in Brazil. This mostly low-level azithromycin resistance may threaten the recommended ceftriaxone-azithromycin therapy, but the lack of ceftriaxone resistance is encouraging. Enhanced gonococcal AMR surveillance, including WGS, is imperative in Brazil and other Latin American and Caribbean countries.


Assuntos
Antibacterianos , Azitromicina , Farmacorresistência Bacteriana , Gonorreia , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Sequenciamento Completo do Genoma , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/classificação , Brasil/epidemiologia , Humanos , Gonorreia/microbiologia , Gonorreia/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Azitromicina/farmacologia , Masculino , Genoma Bacteriano , Feminino , Adulto , Epidemiologia Molecular , Adulto Jovem , Genômica , RNA Ribossômico 23S/genética , Pessoa de Meia-Idade , Ceftriaxona/farmacologia , Adolescente , Tipagem de Sequências Multilocus , Cefixima/farmacologia
2.
J Antimicrob Chemother ; 76(5): 1221-1228, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33564854

RESUMO

OBJECTIVES: Novel antimicrobials for treatment of gonorrhoea are imperative. The first-in-class spiropyrimidinetrione zoliflodacin is promising and currently in an international Phase 3 randomized controlled clinical trial (RCT) for treatment of uncomplicated gonorrhoea. We evaluated the in vitro activity of and the genetic conservation of the target (GyrB) and other potential zoliflodacin resistance determinants among 1209 consecutive clinical Neisseria gonorrhoeae isolates obtained from 25 EU/European Economic Area (EEA) countries in 2018 and compared the activity of zoliflodacin with that of therapeutic antimicrobials currently used. METHODS: MICs of zoliflodacin, ceftriaxone, cefixime, azithromycin and ciprofloxacin were determined using an agar dilution technique for zoliflodacin or using MIC gradient strip tests or an agar dilution technique for the other antimicrobials. Genome sequences were available for 96.1% of isolates. RESULTS: Zoliflodacin modal MIC, MIC50, MIC90 and MIC range were 0.125, 0.125, 0.125 and ≤0.004-0.5 mg/L, respectively. The resistance was 49.9%, 6.7%, 1.6% and 0.2% to ciprofloxacin, azithromycin, cefixime and ceftriaxone, respectively. Zoliflodacin did not show any cross-resistance to other tested antimicrobials. GyrB was highly conserved and no zoliflodacin gyrB resistance mutations were found. No fluoroquinolone target GyrA or ParC resistance mutations or mutations causing overexpression of the MtrCDE efflux pump substantially affected the MICs of zoliflodacin. CONCLUSIONS: The in vitro susceptibility to zoliflodacin was high and the zoliflodacin target GyrB was conserved among EU/EEA gonococcal isolates in 2018. This study supports further clinical development of zoliflodacin. However, additional zoliflodacin data regarding particularly the treatment of pharyngeal gonorrhoea, pharmacokinetics/pharmacodynamics and resistance selection, including suppression, would be valuable.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Barbitúricos , Ceftriaxona/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Europa (Continente) , Gonorreia/tratamento farmacológico , Humanos , Isoxazóis , Testes de Sensibilidade Microbiana , Morfolinas , Neisseria gonorrhoeae/genética , Oxazolidinonas , Compostos de Espiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA