Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011536, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486930

RESUMO

Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to ß-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased ß-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls ß-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Via de Pentose Fosfato/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Oxacilina/farmacologia , Parede Celular/metabolismo , Monobactamas/metabolismo , Resistência beta-Lactâmica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
2.
J Bacteriol ; 206(2): e0033723, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299858

RESUMO

Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.


Assuntos
Ácido Glutâmico , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácido Glutâmico/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Prolina/genética , Prolina/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
J Bacteriol ; 204(7): e0061721, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35735992

RESUMO

Staphylococcus aureus is a medically important pathogen with high metabolic versatility allowing it to infect various niches within a host. S. aureus utilizes two major transcriptional regulators, namely, CodY and CcpA, to remodel metabolic and virulence gene expression in response to changing environmental conditions. Previous studies revealed that inactivation of either codY or ccpA has a pronounced impact on different aspects of staphylococcal physiology and pathogenesis. To determine the contribution and interplay of these two regulators in modulating central metabolism, virulence, and biofilm development, we constructed and characterized the codY ccpA double mutant in S. aureus UAMS-1. In line with previous studies, we found that CcpA and CodY control the cellular metabolic status by altering carbon flux through the central and overflow metabolic pathways. Our results demonstrate that ccpA inactivation impairs biofilm formation and decreases incorporation of extracellular DNA (eDNA) into the biofilm matrix, whereas disrupting codY resulted in a robust structured biofilm tethered together with eDNA and polysaccharide intercellular adhesin (PIA). Interestingly, inactivation of both codY and ccpA decreases biofilm biomass and reduces eDNA release in the double mutant. Compared with the inactivation of codY, the codY ccpA mutant did not overexpress toxins but maintained overexpression of amino acid metabolism pathways. Furthermore, the codY ccpA mutant produced large amounts of PIA, in contrast to the wild-type strain and ccpA mutant. Combined, the results of this study suggest that the coordinated action of CodY and CcpA modulate central metabolism, virulence gene expression, and biofilm-associated genes to optimize growth on preferred carbon sources until starvation sets in. IMPORTANCE Staphylococcus aureus is a leading cause of biofilm-associated infections, including infective endocarditis, worldwide. A greater understanding of metabolic forces driving biofilm formation in S. aureus is essential for the identification of novel therapeutic targets and for the development of new strategies to combat this medically important pathogen. This study characterizes the interplay and regulation of central metabolism and biofilm development by two global transcriptional regulators, CodY and CcpA. We found that the lack of CcpA and/or CodY have different impacts on intracellular metabolic status leading to a formation of morphologically altered biofilms. Overall, the results of this study provide new insights into our understanding of metabolism-mediated regulation of biofilm development in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus/metabolismo
4.
J Bacteriol ; 203(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33593944

RESUMO

Under conditions of glucose excess, aerobically growing bacteria predominantly direct carbon flux towards acetate fermentation, a phenomenon known as overflow metabolism or the bacterial 'Crabtree effect'. Numerous studies of the major acetate-generating pathway, the Pta-AckA, revealed its important role in bacterial fitness through the control of central metabolism to sustain balanced growth and cellular homeostasis. In this work, we highlight the contribution of the Pta-AckA pathway to fitness of the spore-forming bacterium, Bacillus anthracis We demonstrate that disruption of the Pta-AckA pathway causes a drastic growth reduction in the mutants and alters the metabolic and energy status of the cells. Our results revealed that inactivation of the Pta-AckA pathway increases the glucose consumption rate, affects intracellular ATP, NAD+ and NADH levels and leads to a metabolic block at the pyruvate and acetyl-CoA nodes. Consequently, accumulation of intracellular acetyl-CoA and pyruvate forces bacteria to direct carbon into the TCA and/or glyoxylate cycles as well as fatty acid and poly(3-hydroxybutyrate) (PHB) biosynthesis pathways. Notably, the presence of phosphate butyryltransferase in B. anthracis partially compensates for the loss of phosphotransacetylase activity. Furthermore, overexpression of the ptb gene not only eliminates the negative impact of the pta mutation on B. anthracis fitness, but also restores normal growth in the pta mutant of the non-butyrate-producing bacterium, Staphylococcus aureus Taken together, the results of this study demonstrate the importance of the Pta-AckA pathway for B. anthracis fitness by revealing its critical contribution to the maintenance of metabolic homeostasis during aerobic growth under conditions of carbon overflow.IMPORTANCE B. anthracis, the etiologic agent of anthrax, is a highly pathogenic, spore-forming bacterium that causes acute, life-threatening disease in both humans and livestock. A greater understanding of the metabolic determinants governing fitness of B. anthracis is essential for the development of successful therapeutic and vaccination strategies aimed at lessening the potential impact of this important biodefense pathogen. This study is the first to demonstrate the vital role of the Pta-AckA pathway in preserving energy and metabolic homeostasis in B. anthracis under conditions of carbon overflow, therefore, highlighting this pathway as a potential therapeutic target for drug discovery. Overall, the results of this study provide important insight into understanding the metabolic processes and requirements driving rapid B. anthracis proliferation during vegetative growth.

5.
Mol Microbiol ; 104(5): 793-803, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28299860

RESUMO

Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species.


Assuntos
Bacillus anthracis/metabolismo , Hidroxibutiratos/metabolismo , Lipídeos/biossíntese , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Ácidos Picolínicos/metabolismo , Esporos Bacterianos/metabolismo
6.
PLoS Pathog ; 10(6): e1004205, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945831

RESUMO

Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC) and α-acetolactate synthase/decarboxylase (AlsSD) overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.


Assuntos
Acetolactato Sintase/metabolismo , Biofilmes/crescimento & desenvolvimento , Carboxiliases/metabolismo , Piruvato Oxidase/metabolismo , Staphylococcus aureus/metabolismo , Acetatos/metabolismo , Animais , Carbono/metabolismo , Dano ao DNA , Endocardite Bacteriana/imunologia , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Regulação Bacteriana da Expressão Gênica , Consumo de Oxigênio , Coelhos , Espécies Reativas de Oxigênio
7.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945400

RESUMO

Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to ß-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased ß-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the pgl mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to pgl was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the vraFG or graRS loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in ß-lactam resistance, which will support efforts to identify new drug targets and reintroduce ß-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other ß-lactam resistant pathogens. Author summary: High-level resistance to penicillin-type (ß-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene pgl perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of ß-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.

8.
mBio ; 13(3): e0039522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475645

RESUMO

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the human host, suggesting that it has significant metabolic versatility. Indeed, bioinformatic analysis suggests that it has the biosynthetic capability to synthesize all 20 amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino acids, including arginine. Studies in our laboratory are designed to assess the biological function of amino acid auxotrophy in this significant pathogen. This study reveals that the metabolic block repressing arginine biosynthesis in media lacking glucose is the transcriptional repression of ornithine carbamoyltransferase encoded by arcB1 within the native arginine deiminase operon in addition to limited intracellular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates can grow in media lacking arginine, suggesting that mutations are selected in S. aureus that allow growth in particular niches of the human host.


Assuntos
Ornitina Carbamoiltransferase , Staphylococcus aureus , Aminoácidos/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Ornitina/metabolismo , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
9.
mBio ; 12(3): e0053021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182779

RESUMO

Penicillin binding protein 2a (PBP2a)-dependent resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact ß-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to ß-lactam antibiotics. IMPORTANCEmecA-dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, sucC, increased susceptibility to ß-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of ß-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome ß-lactam resistance.


Assuntos
Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , beta-Lactamas/farmacologia , Acil Coenzima A/análise , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Mutação , Proteoma , Resistência beta-Lactâmica
10.
NPJ Syst Biol Appl ; 6(1): 3, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001720

RESUMO

Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.


Assuntos
Biologia Computacional/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Genoma Bacteriano/genética , Genômica/métodos , Humanos , Modelos Biológicos , Infecções Estafilocócicas/genética
11.
J Bacteriol ; 191(13): 4103-10, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19411321

RESUMO

The Staphylococcus aureus cid and lrg operons have been shown to control cell death and lysis in a manner thought to be analogous to programmed cell death (apoptosis) in eukaryotic organisms. Although orthologous operons are present in a wide variety of bacterial species, members of the Bacillus cereus group are unique in that they have a total of four cid-/lrg-like operons. Two of these operons are similar to the S. aureus cid and lrg operons, while the other two (designated clhAB(1) and clhAB(2)) are unique to this group. In the present study, the functions and regulation of these loci were examined. Interestingly, the Bacillus anthracis lrgAB mutant displayed decreased stationary-phase survival, whereas the clhAB(2) mutant exhibited increased stationary-phase survival compared to the parental and complementation strains. However, neither mutation had a dramatic effect on murein hydrolase activity or autolysis. Furthermore, a quantitative analysis of the sporulation efficiency revealed that both mutants formed fewer spores than did the parental strain. Similar to S. aureus, B. anthracis lrgAB transcription was shown to be induced by gramicidin and CCCP, agents known to dissipate the proton motive force, in a lytSR-dependent manner. Northern blot analyses also demonstrated a positive role for lytSR in the clhAB(2) transcription. Taken together, the results of the present study demonstrate that B. anthracis lrgAB and clhAB(2) play important roles in the control of cell death and lysis and reveal a previously unrecognized role of this system in sporulation.


Assuntos
Apoptose/genética , Bacillus anthracis/fisiologia , Óperon/fisiologia , Bacillus anthracis/citologia , Bacillus anthracis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Northern Blotting , Ciclo Celular/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Teste de Complementação Genética , Microscopia de Fluorescência , Modelos Genéticos , Óperon/genética , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia
12.
J Bacteriol ; 191(15): 4767-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502411

RESUMO

Studies of the Staphylococcus aureus LytSR two-component regulatory system have led to the identification of the cid and lrg operons, which affect murein hydrolase activity, stationary-phase survival, antibiotic tolerance, and biofilm formation. The cid gene products enhance murein hydrolase activity and antibiotic tolerance whereas the lrg gene products inhibit these processes in a manner believed to be analogous to bacteriophage-encoded holins and antiholins, respectively. Importantly, these operons have been shown to play significant roles in biofilm development by controlling the release of genomic DNA, which then becomes an important structural component of the biofilm matrix. To determine the role of LytSR in biofilm development, a lytS knockout mutant was generated from a clinical S. aureus isolate (UAMS-1) and the effects on gene expression and biofilm formation were examined. As observed in laboratory isolates, LytSR was found to be required for lrgAB expression. Furthermore, the lytS mutant formed a more adherent biofilm than the wild-type and complemented strains. Consistent with previous findings, the increased adherence of the mutant was attributed to the increased prevalence of matrix-associated eDNA. Transcription profiling studies indicated that the lrgAB operon is the primary target of LytSR-mediated regulation but that this regulatory system also impacts expression of a wide variety of genes involved in basic metabolism. Overall, the results of these studies demonstrate that the LytSR two-component regulatory system plays an important role in S. aureus biofilm development, likely as a result of its direct influence on lrgAB expression.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/genética , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Northern Blotting , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Óperon/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
13.
Appl Environ Microbiol ; 74(6): 1687-95, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192416

RESUMO

Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.


Assuntos
Proteínas de Bactérias/genética , Mutação , Mycobacterium avium subsp. paratuberculosis/genética , Alelos , Sequência de Bases , Southern Blotting , Deleção de Genes , Genes Bacterianos , Modelos Genéticos , Mutagênese Sítio-Dirigida , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/genética
14.
J Vet Sci ; 7(4): 349-54, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106226

RESUMO

Paratuberculosis (PTB) is a major disease problem worldwide, and causes major economic losses in the dairy industry. Although PTB has been reported in Korea, no studies have been conducted to determine its prevalence and no program has been developed to control the disease. In this study, the sera of beef (n = 1,056) and dairy cattle (n = 1,105) from all provinces in Korea were tested to determine the prevalence of PTB using two different ELISA: an 'in house' modified absorbed ELISA (P-ELISA) based on sonicated antigen from Mycobacterium avium subsp. paratuberculosis ATCC 19698, and a commercial ELISA (C-ELISA). Receiver operating characteristic analysis was used to determine the cutoff point for P-ELISA. Based on C-ELISA results, the area under the curve for P-ELISA was 0.913 (95% CI, 0.883 to 0.943). Using a cutoff point of 0.100, P-ELISA showed a sensitivity of 62.0% and a specificity of 93.7%. The kappa value and the percent agreement between the two ELISAs were 0.322 and 92.5%, respectively. Both ELISAs showed a significant correlation between age and seropositivity (p < 0.01). According to C-ELISA, 71 of 2,161 sera (3.3%, 95 CI, 2.6% to 4.1%) were test-positive. The national true prevalence of PTB was estimated to be 7.1%. The findings suggest that a control program should be implemented to limit the spread of this disease, and that P-ELISA could be used as a screening test that produces results similar to C-ELISA.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/epidemiologia , Animais , Anticorpos Antibacterianos/sangue , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Coreia (Geográfico)/epidemiologia , Masculino , Paratuberculose/sangue , Curva ROC , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
15.
Eur J Med Chem ; 124: 129-137, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27565555

RESUMO

Staphylococcus aureus (SA) is a major cause of hospital- and community-associated bacterial infections in the U.S. and around the world. These infections have become increasingly difficult to treat due to the propensity to develop antibiotic resistance and form biofilm. To date, no antibiofilm agents are available for clinical use. To add to the repertoire of antibiotics for clinical use and to provide novel agents for combating both SA and biofilm infections, we previously reported marinopyrroles as potent anti-SA agents. In this study, we used fragment-based and bioisostere approaches to design and synthesize a series of novel fluorinated pyrrolomycins for the first time, performed analyses of their physicochemical and drug-like properties, and investigated structure activity relationships and pharmacokinetics. These promising fluorinated pyrrolomycins demonstrate potent antibacterial activity against SA with favorable drug-like properties and pharmacokinetic profiles. Importantly, these compounds kill staphylococcal biofilm-associated cells with a lack of mammalian cell cytotoxicity and no occurrence of bacterial resistance. Our novel fluorinated pyrrolomycin 4 has a clogP value of 4.1, an MIC of 73 ng/mL, MBC of 4 µg/mL, kill staphylococcal-associated biofilm at 8 µg/mL, bioavailability of 35%, and the elimination half-life of 6.04 h and 6.75 h by intravenous and oral administration, respectively. This is the first report of comprehensive drug discovery studies on pyrrolomycin-based antibiotics.


Assuntos
Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Halogenação , Pirróis/síntese química , Pirróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Técnicas de Química Sintética , Células HeLa , Humanos , Pirróis/farmacocinética , Pirróis/toxicidade
16.
Mol Microbiol ; 62(4): 1158-69, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17005012

RESUMO

Recent studies have shown that the Staphylococcus aureus cidABC and lrgAB operons are involved in the regulation of cell death and lysis. The transcription of cidABC and lrgAB was shown to be induced by acetic acid and was dependent on the cidR gene encoding a new member of the LysR-type transcription regulator (LTTR) family of proteins. In the study presented here, we examined the phenotypic and regulatory effects of disrupting a cidR homologue in Bacillus anthracis. As in S. aureus, the cidR mutation affected expression of the B. anthracis cid and lrg homologues, murein hydrolase activity and cell viability in stationary phase. Interestingly, the predominant murein hydrolase affected was an 85 kDa protein that was identified as Sap, a primary constituent of the S-layer in B. anthracis. The ability of Sap, as well as its counterpart EA1, to exhibit murein hydrolase activity was confirmed by cloning their respective genes in Escherichia coli and showing that the overexpressed proteins contained this activity. Northern blot analyses revealed that the cidR mutation caused reduced transcription of the genes encoding Sap and EA1, as well as CsaB involved in the attachment of the S-layer proteins to the cell wall. The results of these studies not only establish the existence of the cid and lrg murein hydrolase regulatory network in B. anthracis, but also help to define the function and regulation of the S-layer proteins.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/fisiologia , Glicoproteínas de Membrana/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Proteínas de Bactérias/genética , Carboxiliases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Óperon , Transcrição Gênica
17.
J Clin Microbiol ; 43(9): 4498-506, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16145098

RESUMO

Current assays used to detect Mycobacterium bovis infection lack accuracy, especially for recently infected animals, or are impractical for rapid field diagnostic applications. To overcome these limitations with serological assays, a synthetic peptide derived from early secretory antigenic target 6 (ESAT6-p) and a recombinant major secreted immunogenic protein (rMPB70) of M. bovis were used in an enzyme-linked immunosorbent assay (EIA), an immunochromatographic assay (ICGA), and a latex bead agglutination assay (LBAA). Sera from noninfected, M. bovis-infected, or M. avium subsp. paratuberculosis-infected (by natural and experimental routes) animals were evaluated. Receiver operating characteristic analysis comparing optical density values from the EIA with results of bacterial culture or skin test, the reference test, established suitable cutoff values for assessing sensitivity and specificity. The EIA and LBAA, respectively, had sensitivities of 98.6 and 94.8%, specificities of 98.5 and 92.6%, and kappa values of 0.97 and 0.88 with ESAT6-p. The EIA, ICGA, and LBAA, respectively, had sensitivities of 96.8, 83.0, and 86.7%, specificities of 90.1, 99.4, and 97.8%, and kappa values of 0.87, 0.85, and 0.83 with rMPB70. Examination of serial samples of sera collected from experimentally M. bovis-infected cattle and deer revealed that ESAT6-p-specific responses developed early after infection whereas responses to rMPB70 developed later in the course of disease. The advantage of the LBAA and ICGA as initial tests for multiple species is a rapid reaction obtained in 2 to 3 h by LBAA or 20 min by ICGA without species-specific secondary antibodies under field conditions, thus allowing immediate segregation of suspect animals for further testing before culling.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Mycobacterium bovis/imunologia , Peptídeos/imunologia , Tuberculose Bovina/diagnóstico , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bovinos , Cromatografia/métodos , Cervos , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Testes de Fixação do Látex , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/diagnóstico , Paratuberculose/microbiologia , Peptídeos/genética , Kit de Reagentes para Diagnóstico , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Testes Sorológicos
18.
Clin Diagn Lab Immunol ; 11(6): 1070-4, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15539508

RESUMO

Extensive studies have shown that the current assays used to identify cattle infected with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis are not sufficiently sensitive and specific to detect all infected animals, especially animals recently infected with the pathogens. In the present report we show that these limitations might be overcome with a latex bead agglutination assay (LBAA). With the specific immunodominant epitope (ESAT6-p) of M. bovis, we developed an LBAA and enzyme immunoassay (EIA) for that purpose and compared them with the "gold standard" culture method and skin test for their efficacy in detecting bovine tuberculosis. When sera from control healthy cows (n = 10), M. avium subsp. paratuberculosis-positive cattle (naturally infected, n = 16; experimentally infected, n = 8), and M. bovis-positive cattle (naturally infected, n = 49;experimentally infected, n = 20) were applied to an EIA and an LBAA developed with ESAT6-p, the two tests showed similar sensitivity (97.1% by EIA, 95.7% by LBAA), high specificity (94.2% by EIA, 100% by LBAA), and a positive correlation (kappa value, 0.85; correlation rate, 93.2%; correlation coefficient, 0.64). Receiver operating characteristic analysis of EIA results and comparison with the culture method determined a suitable cutoff value at 0.469, with an area under the curve of 0.991 (95% confidence interval, 0.977 to 1.0). As LBAA didn't show any positive reactions with sera from uninfected control cows or M. avium subsp. paratuberculosis-infected cattle, which were confirmed to be free of M. bovis by culture or PCR, LBAA using the ESAT6-p can be a rapid and useful M. bovis diagnostic assay. The data suggest that rapid, sensitive, and specific assays can be developed with peptides containing immunodominant epitopes present in proteins uniquely expressed in M. bovis or M. avium subsp. paratuberculosis for differential diagnosis of cattle infected with M. bovis or M. avium subsp. paratuberculosis.


Assuntos
Anticorpos Antibacterianos/análise , Mycobacterium avium subsp. paratuberculosis/imunologia , Mycobacterium bovis/imunologia , Paratuberculose/diagnóstico , Tuberculose Bovina/diagnóstico , Animais , Bovinos , Diagnóstico Diferencial , Epitopos Imunodominantes/imunologia , Testes de Fixação do Látex/métodos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA