RESUMO
PURPOSE OF REVIEW: In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIß. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIß consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS: Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY: TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Assuntos
Coagulação Sanguínea , Lipoproteínas , Humanos , Lipoproteínas/metabolismo , Proteína S/metabolismo , Isoformas de Proteínas/metabolismo , Trombose/metabolismo , Hemorragia/metabolismoRESUMO
A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.
Assuntos
Proteína ADAMTS1 , Animais , Camundongos , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Agrecanas/metabolismo , Versicanas/metabolismoRESUMO
Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.
Assuntos
Bradicinina/metabolismo , Fator IX/metabolismo , Fator XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulação Sanguínea/fisiologia , Bradicinina/química , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes , Fator IX/química , Fator XI/química , Fator XI/metabolismo , Fator XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Trombina/químicaRESUMO
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography-tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.
Assuntos
Proteínas ADAMTS/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Hipertensão Arterial Pulmonar/enzimologia , Proteínas ADAMTS/genética , Células HEK293 , Humanos , Osteopontina/genética , Osteopontina/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Hipertensão Arterial Pulmonar/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismoRESUMO
Tissue factor pathway inhibitor (TFPI), the main inhibitor of initiation of coagulation, exerts an important anticoagulant role through the factor Xa (FXa)-dependent inhibition of tissue factor/factor VIIa. Protein S is a TFPI cofactor, enhancing the efficiency of FXa inhibition. TFPI can also inhibit prothrombinase assembly by directly interacting with coagulation factor V (FV), which has been activated by FXa. Because full-length TFPI associates with FV in plasma, we hypothesized that FV may influence TFPI inhibitory function. Using pure component FXa inhibition assays, we found that although FV alone did not influence TFPI-mediated FXa inhibition, it further enhanced TFPI in the presence of protein S, resulting in an â¼8-fold reduction in Ki compared with TFPI alone. A FV variant (R709Q/R1018Q/R1545Q, FVΔIIa) that cannot be cleaved/activated by thrombin or FXa also enhanced TFPI-mediated inhibition of FXa â¼12-fold in the presence of protein S. In contrast, neither activated FV nor recombinant B-domain-deleted FV could enhance TFPI-mediated inhibition of FXa in the presence of protein S, suggesting a functional contribution of the B domain. Using TFPI and protein S variants, we show further that the enhancement of TFPI-mediated FXa inhibition by protein S and FV depends on a direct protein S/TFPI interaction and that the TFPI C-terminal tail is not essential for this enhancement. In FXa-catalyzed prothrombin activation assays, both FV and FVΔIIa (but not activated FV) enhanced TFPI function in the presence of protein S. These results demonstrate a new anticoagulant (cofactor) function of FV that targets the early phase of coagulation before prothrombinase assembly.
Assuntos
Anticoagulantes/metabolismo , Coagulação Sanguínea/fisiologia , Fator V/metabolismo , Substituição de Aminoácidos , Fator V/genética , Fator Xa/genética , Fator Xa/metabolismo , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Proteína S/genética , Proteína S/metabolismo , Protrombina/genética , Protrombina/metabolismoRESUMO
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.
Assuntos
Antibacterianos/uso terapêutico , Úlcera de Buruli/tratamento farmacológico , Fibrina/metabolismo , Macrolídeos/uso terapêutico , Mycobacterium ulcerans/fisiologia , Trombomodulina/metabolismo , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Células Endoteliais/metabolismo , Humanos , Macrolídeos/metabolismo , Necrose/microbiologia , Pele/microbiologia , Pele/patologiaRESUMO
Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the transforming growth factor-ß superfamily, and is highly expressed in platelets and endothelial cells. We previously demonstrated its positive role in thrombus formation using a zebrafish thrombosis model. In the present study, we used Bambi-deficient mice and radiation chimeras to evaluate the function of this receptor in the regulation of both hemostasis and thrombosis. We show that Bambi(-/-) and Bambi(+/-) mice exhibit mildly prolonged bleeding times compared with Bambi(+/+) littermates. In addition, using 2 in vivo thrombosis models in mesenterium or cremaster muscle arterioles, we demonstrate that Bambi-deficient mice form unstable thrombi compared with Bambi(+/+) mice. No defects in thrombin generation in Bambi(-/-) mouse plasma could be detected ex vivo. Moreover, the absence of BAMBI had no effect on platelet counts, platelet activation, aggregation, or platelet procoagulant function. Similar to Bambi(-/-) mice, Bambi(-/-) transplanted with Bambi(+/+) bone marrow formed unstable thrombi in the laser-induced thrombosis model that receded more rapidly than thrombi that formed in Bambi(+/+) mice receiving Bambi(-/-) bone marrow transplants. Taken together, these results provide strong evidence for an important role of endothelium rather than platelet BAMBI as a positive regulator of both thrombus formation and stability.
Assuntos
Endotélio Vascular/metabolismo , Hemostasia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Trombose/genética , Trombose/metabolismo , Animais , Tempo de Sangramento , Coagulação Sanguínea/genética , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Knockout , Trombose/etiologiaRESUMO
Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay. Of these variants, two protein S/growth arrest-specific 6 chimeras, with either the whole sex hormone-binding globulin (SHBG)-like domain (Val243-Ser635; chimera III) or the SHBG laminin G-type 1 subunit (Ser283-Val459; chimera I), respectively, substituted by the corresponding domain in growth arrest-specific 6, were unable to enhance TFPI. The importance of the protein S SHBG-like domain (and its laminin G-type 1 subunit) for binding and enhancement of TFPI was confirmed in FXa inhibition assays and using surface plasmon resonance. In addition, protein S bound to C4b binding protein showed greatly reduced enhancement of TFPI-mediated inhibition of FXa compared with free protein S. We show that binding of TFPI to the protein S SHBG-like domain enables TFPI to interact optimally with FXa on a phospholipid membrane.
Assuntos
Lipoproteínas/metabolismo , Proteína S/metabolismo , Sítios de Ligação/genética , Western Blotting , Proteína de Ligação ao Complemento C4b/metabolismo , Fator Xa/metabolismo , Células HEK293 , Humanos , Lipoproteínas/genética , Mutação , Fosfolipídeos/metabolismo , Proteína C/metabolismo , Proteína S/genética , Globulina de Ligação a Hormônio Sexual/metabolismo , Ressonância de Plasmônio de Superfície , Trombina/metabolismo , Tromboplastina/metabolismoRESUMO
Protein S is a cofactor for tissue factor pathway inhibitor (TFPI) that critically reduces the inhibition constant for FXa to below the plasma concentration of TFPI. TFPI Kunitz domain 3 is required for this enhancement to occur. To delineate the molecular mechanism underlying enhancement of TFPI function, in the present study, we produced a panel of Kunitz domain 3 variants of TFPI encompassing all 12 surface-exposed charged residues. Thrombin-generation assays in TFPI-depleted plasma identified a novel variant, TFPI E226Q, which exhibited minimal enhancement by protein S. This was confirmed in purified FXa inhibition assays in which no protein S enhancement of TFPI E226Q was detected. Surface plasmon resonance demonstrated concentration-dependent binding of protein S to wild-type TFPI, but almost no binding to TFPI E226Q. We conclude that the TFPI Kunitz domain 3 residue Glu226 is essential for TFPI enhancement by protein S.
Assuntos
Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação Puntual , Proteína S/metabolismo , Fator Xa/metabolismo , Inibidores do Fator Xa , Humanos , Lipoproteínas/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Trombina/metabolismoRESUMO
Protection of the endothelium is provided by circulating sphingosine-1-phosphate (S1P), which maintains vascular integrity. We show that HDL-associated S1P is bound specifically to both human and murine apolipoprotein M (apoM). Thus, isolated human ApoM(+) HDL contained S1P, whereas ApoM(-) HDL did not. Moreover, HDL in Apom(-/-) mice contains no S1P, whereas HDL in transgenic mice overexpressing human apoM has an increased S1P content. The 1.7-Å structure of the S1P-human apoM complex reveals that S1P interacts specifically with an amphiphilic pocket in the lipocalin fold of apoM. Human ApoM(+) HDL induced S1P(1) receptor internalization, downstream MAPK and Akt activation, endothelial cell migration, and formation of endothelial adherens junctions, whereas apoM(-) HDL did not. Importantly, lack of S1P in the HDL fraction of Apom(-/-) mice decreased basal endothelial barrier function in lung tissue. Our results demonstrate that apoM, by delivering S1P to the S1P(1) receptor on endothelial cells, is a vasculoprotective constituent of HDL.
Assuntos
Apolipoproteínas/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Apolipoproteínas/química , Apolipoproteínas/genética , Apolipoproteínas M , Western Blotting , Células Cultivadas , Cristalografia por Raios X , Endocitose , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Ativação Enzimática , Células HEK293 , Humanos , Lipocalinas/química , Lipocalinas/genética , Lipocalinas/metabolismo , Lipoproteínas HDL/química , Lisofosfolipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/química , Esfingosina/metabolismoAssuntos
Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Fibrinólise/imunologia , Mucosa Nasal/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Feminino , Humanos , Cinética , Masculino , Mastócitos/imunologia , Metaloproteinase 9 da Matriz/imunologia , Pessoa de Meia-Idade , Adulto JovemRESUMO
Tissue factor pathway inhibitor α (TFPIα) is the major physiological regulator of the initiation of blood coagulation. In vitro, TFPIα anticoagulant function is enhanced by its cofactor, protein S. To define the role of protein S enhancement in TFPIα anticoagulant function in vivo, we blocked endogenous TFPI in mice using a monoclonal antibody (14D1). This caused a profound increase in fibrin deposition using the laser injury thrombosis model. To explore the role of plasma TFPIα in regulating thrombus formation, increasing concentrations of human TFPIα were coinjected with 14D1, which dose-dependently reduced fibrin deposition. Inhibition of protein S cofactor function using recombinant C4b-binding protein ß chain significantly reduced the anticoagulant function of human TFPIα in controlling fibrin deposition. We report an in vivo model that is sensitive to the anticoagulant properties of the TFPIα-protein S pathway and show the importance of protein S as a cofactor in the anticoagulant function of TFPIα in vivo.
Assuntos
Anticoagulantes , Coagulação Sanguínea , Humanos , Animais , Camundongos , Anticoagulantes/farmacologia , Anticoagulantes/química , Lipoproteínas/metabolismo , FibrinaRESUMO
Hemorrhage is the leading cause of trauma death, and innovation in hemostatic technology is important. The strongly hydrophobic carbon nanofiber (CNF) coating has previously been shown to have excellent hemostatic properties. However, the understanding of how CNF coating guides the coagulation cascade and the biosafety of CNF as hemostatic agents has yet to be explored. Here, our thrombin generation assay investigation showed that CNF induced fast blood coagulation via factor (F) XII activation of the intrinsic pathway. We further performed studies of a rat vein injury and demonstrated that the CNF gauze enabled a substantial reduction of blood loss compared to both the plain gauze and kaolin-imbued gauze (QuikClot). Analysis of blood samples from the model revealed no acute toxicity from the CNF gauze, with no detectable CNF deposition in any organ, suggesting that the immobilization of CNF on our gauze prevented the infiltration of CNF into the bloodstream. Direct injection of CNF into the rat vein was also investigated and found not to elicit overt acute toxicity or affect animal survival or behavior. Finally, toxicity assays with primary keratinocytes revealed minimal toxicity responses to CNF. Our studies thus supported the safety and efficacy of the CNF hemostatic gauze, highlighting its potential as a promising approach in the field of hemostatic control.
Assuntos
Hemorragia , Hemostáticos , Ratos , Animais , Hemorragia/prevenção & controle , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Coagulação Sanguínea , Hemostasia , Interações Hidrofóbicas e Hidrofílicas , Modelos Animais de DoençasRESUMO
The G haplotype is a group of co-inherited single nucleotide variants in the F5 gene that reduce venous thromboembolism (VTE) risk. Even though seven percent of the population is homozygous for the G haplotype (F5-G/G), the underlying mechanism of VTE protection is poorly understood. Using RNA-seq data from 4,651 blood donors in the INTERVAL study we detected a rare excision event at the FV-short splice sites in 5% of F5-G/Gs as compared with 2.16% of homozygotes for the F5 reference sequence (F5-ref) (p=0.003). Highly elevated (~10-fold) FV-short, an FV isoform lacking most of the B-domain, has been linked with increased tissue factor inhibitor alpha (TFPIα) levels in rare hemorrhagic diathesis including East Texas Bleeding Disorder. To ascertain whether the enhanced FV-short splicing seen in F5-G/G INTERVAL participants translated to increased plasma FV-short levels we analyzed plasma samples from 7 F5-G/G and 13 F5-ref individuals in a recall-by-genotype study. A ~2.2-fold higher amount of FV-short was found in a plasma pool from F5-G/G participants as compared with F5-refs (p=0.029), but no difference in total FV levels. Whilst no significant difference in TFPI levels were found, F5-G/Gs showed a ~1.4-fold TFPI-dependent increase in lag time to thrombin generation compared to F5-refs (p=0.0085). Finally, in an analysis of 117,699 UK Biobank participants we discovered that, while being protective against VTE, the G haplotype also confers an increase in bleeding episodes (p=0.011). Our study provides evidence that the effect of the common G haplotype is mediated by the FV-short/TFPI pathway.
RESUMO
Protein S has an important anticoagulant function by acting as a cofactor for activated protein C (APC). We recently reported that the EGF1 domain residue Asp95 is critical for APC cofactor function. In the present study, we examined whether additional interaction sites within the Gla domain of protein S might contribute to its APC cofactor function. We examined 4 residues, composing the previously reported "Face1" (N33S/P35T/E36A/Y39V) variant, as single point substitutions. Of these protein S variants, protein S E36A was found to be almost completely inactive using calibrated automated thrombography. In factor Va inactivation assays, protein S E36A had 89% reduced cofactor activity compared with wild-type protein S and was almost completely inactive in factor VIIIa inactivation; phospholipid binding was, however, normal. Glu36 lies outside the ω-loop that mediates Ca(2+)-dependent phospholipid binding. Using mass spectrometry, it was nevertheless confirmed that Glu36 is γ-carboxylated. Our finding that Gla36 is important for APC cofactor function, but not for phospholipid binding, defines a novel function (other than Ca(2+) coordination/phospholipid binding) for a Gla residue in vitamin K-dependent proteins. It also suggests that residues within the Gla and EGF1 domains of protein S act cooperatively for its APC cofactor function.
Assuntos
Ácido 1-Carboxiglutâmico/fisiologia , Proteína C/metabolismo , Proteína S/metabolismo , Proteína S/fisiologia , Ácido 1-Carboxiglutâmico/química , Sequência de Aminoácidos , Substituição de Aminoácidos/fisiologia , Sítios de Ligação/genética , Domínio Catalítico/genética , Células Cultivadas , Fator VIIIa/metabolismo , Fator Va/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteína C/agonistas , Proteína C/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteína S/química , Proteína S/genética , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
BACKGROUND: For maximal TFPIα functionality, 2 synergistic cofactors, protein S and FV-short, are required. Both interact with TFPIα, protein S through Kunitz 3 residues Arg199/Glu226 and FV-short with the C-terminus. How these interactions impact the synergistic enhancement remains unclear. OBJECTIVES: To determine the importance of the TFPIα-protein S and TFPIα-FV-short interactions for TFPIα enhancement. METHODS: TFPIα variants unable to bind protein S (K3m [R199Q/E226Q]) or FV-short (ΔCT [aa 1-249]) were generated. TFPIα-FV-short binding was studied by plate-binding and co-immunoprecipitation assays; functional TFPIα enhancement by FXa inhibition and prothrombin activation. RESULTS: While WT TFPIα and TFPIα K3m bound FV-short with high affinity (Kdâ¼2nM), TFPIα ΔCT did not. K3m, in contrast to WT, did not incorporate protein S in a TFPIα-FV-short-protein S complex while TFPIα ΔCT bound neither FV-short nor protein S. Protein S enhanced WT TFPIα-mediated FXa inhibition, but not K3m, in the absence of FV-short. However, once FV-short was present, protein S efficiently enhanced TFPIα K3m (EC50: 4.7nM vs 2.0nM for WT). FXa inhibition by ΔCT was not enhanced by protein S alone or combined with FV-short. In FXa-catalyzed prothrombin activation assays, FV-short enhanced TFPIα K3m function in the presence of protein S (5.5 vs 10.4-fold enhancement of WT) whereas ΔCT showed reduced or lack of enhancement by FV-short and protein S, respectively. CONCLUSION: Full TFPIα function requires the presence of both cofactors. While synergistic enhancement can be achieved in the absence of TFPIα-protein S interaction, only TFPIα with an intact C-terminus can be synergistically enhanced by protein S and FV-short.
Assuntos
Coagulação Sanguínea , Protrombina , Humanos , Testes de Coagulação Sanguínea , Fator V/química , Fator V/metabolismo , Fator Xa/metabolismoRESUMO
The homologous proteins Gas6 and protein S (ProS1) are both natural ligands for the TAM (Tyro3, Axl, MerTK) receptor tyrosine kinases. ProS1 selectively activates Tyro3; however, the precise molecular interface of the ProS1-Tyro3 contact has not been characterised. We used a set of chimeric proteins in which each of the C-terminal laminin G-like (LG) domains of ProS1 were swapped with those of Gas6, as well as a set of ProS1 mutants with novel added glycosylations within LG1. Alongside wildtype ProS1, only the chimera containing ProS1 LG1 domain stimulated Tyro3 and Erk phosphorylation in human cancer cells, as determined by Western blot. In contrast, Gas6 and chimeras containing minimally the Gas6 LG1 domain stimulated Axl and Akt phosphorylation. We performed in silico homology modelling and molecular docking analysis to construct and evaluate structural models of both ProS1-Tyro3 and Gas6-Axl ligand-receptor interactions. These analyses revealed a contact between the ProS1 LG1 domain and the first immunoglobulin domain of Tyro3, which was similar to the Gas6-Axl interaction, and involved long-range electrostatic interactions that were further stabilised by hydrophobic and polar contacts. The mutant ProS1 proteins, which had added glycosylations within LG1 but which were all outside of the modelled contact region, all activated Tyro3 in cells with no hindrance. In conclusion, we show that the LG1 domain of ProS1 is necessary for activation of the Tyro3 receptor, involving protein-protein interaction interfaces that are homologous to those of the Gas6-Axl interaction.
RESUMO
The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.
Assuntos
Cartilagem Articular , Proteína HMGB1 , Osteoartrite , Adulto , Animais , Cartilagem Articular/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Humanos , Ligantes , Lipoproteínas LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite/genética , Osteoartrite/metabolismo , Proteômica/métodosRESUMO
Protein S is a cofactor in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. It enhances TFPIα-mediated inhibition of factor (F)Xa activity and generation. The enhancement is dependent on a TFPIα-protein S interaction involving TFPIα Kunitz 3 and protein S laminin G-type (LG)-1. C4b binding protein (C4BP), which binds to protein S LG1, almost completely abolishes its TFPI cofactor function. However, neither the amino acids involved in TFPIα enhancement nor the mechanisms underlying the reduced TFPI cofactor function of C4BP-bound protein S are known. To screen for functionally important regions within protein S LG1, we generated 7 variants with inserted N-linked glycosylation attachment sites. Protein S D253T and Q427N/K429T displayed severely reduced TFPI cofactor function while showing normal activated protein C (APC) cofactor function and C4BP binding. Based on these results, we designed 4 protein S variants in which 4 to 6 surface-exposed charged residues were substituted for alanine. One variant, protein S K255A/E257A/D287A/R410A/K423A/E424A, exhibited either abolished or severely reduced TFPI cofactor function in plasma and FXa inhibition assays, both in the presence or absence of FV-short, but retained normal APC cofactor function and high-affinity C4BP binding. The C4BP ß-chain was expressed to determine the mechanisms behind the reduced TFPI cofactor function of C4BP-bound protein S. Like C4BP-bound protein S, C4BP ß-chain-bound protein S had severely reduced TFPI cofactor function. These results show that protein S Lys255, Glu257, Asp287, Arg410, Lys423, and Glu424 are critical for protein S-mediated enhancement of TFPIα and that binding of the C4BP ß-chain blocks this function.