Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(3): 269-289, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174557

RESUMO

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Aterosclerose/metabolismo
2.
Immunol Rev ; 312(1): 20-37, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089771

RESUMO

Extracellular vesicles (EVs) are critical in the initiation and progression of cardiovascular calcification, and immune cell infiltration and inflammation have a central role in this process. EVs egress from various cardiovascular cell types, which when acquiring specific properties, become calcifying. These calcifying EVs form nidi for microcalcification, which can progress to the macrocalcification lesions that are visualized clinically. We make the distinction between inflammatory-driven and mineral dysregulation-driven calcification, which both share EVs as a central initiator. In inflammation-mediated calcification, inflammation precedes microcalcification and results from EV release from macrophages. Local cellular crosstalk mediated by EVs as well as circulating EVs and other inflammatory nanoparticles, such as calciprotein particles and lipoproteins, are also critical in the progression of cardiovascular calcification. It is imperative that future work links the already established and to be discovered roles of inflammation and innate immunity in cardiovascular calcification to these key signaling and functional roles of these nanoparticles. It remains an understudied area with high potential to unravel mechanistic roles and has important implications in drug target research.


Assuntos
Vesículas Extracelulares , Calcificação Vascular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Imunidade Inata , Inflamação/metabolismo , Macrófagos/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
3.
Circulation ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881493

RESUMO

Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.

4.
Circulation ; 149(5): 391-401, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-37937463

RESUMO

BACKGROUND: High circulating levels of Lp(a) (lipoprotein[a]) increase the risk of atherosclerosis and calcific aortic valve disease, affecting millions of patients worldwide. Although atherosclerosis is commonly treated with low-density lipoprotein-targeting therapies, these do not reduce Lp(a) or risk of calcific aortic valve disease, which has no available drug therapies. Targeting Lp(a) production and catabolism may provide therapeutic benefit, but little is known about Lp(a) cellular uptake. METHODS: Here, unbiased ligand-receptor capture mass spectrometry was used to identify MFSD5 (major facilitator superfamily domain containing 5) as a novel receptor/cofactor involved in Lp(a) uptake. RESULTS: Reducing MFSD5 expression by a computationally identified small molecule or small interfering RNA suppressed Lp(a) uptake and calcification in primary human valvular endothelial and interstitial cells. MFSD5 variants were associated with aortic stenosis (P=0.027 after multiple hypothesis testing) with evidence suggestive of an interaction with plasma Lp(a) levels. CONCLUSIONS: MFSD5 knockdown suppressing human valvular cell Lp(a) uptake and calcification, along with meta-analysis of MFSD5 variants associating with aortic stenosis, supports further preclinical assessment of MFSD5 in cardiovascular diseases, the leading cause of death worldwide.


Assuntos
Valvopatia Aórtica , Estenose da Valva Aórtica , Aterosclerose , Calcinose , Doenças das Valvas Cardíacas , Humanos , Valva Aórtica/metabolismo , Valvopatia Aórtica/metabolismo , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/genética , Aterosclerose/metabolismo , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/complicações , Lipoproteína(a) , Fatores de Risco
5.
Am J Pathol ; 194(4): 539-550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37517686

RESUMO

This review focuses on technologies at the core of calcific aortic valve disease (CAVD) and drug target research advancement, including transcriptomics, proteomics, and molecular imaging. We examine how bulk RNA sequencing and single-cell RNA sequencing have engendered organismal genomes and transcriptomes, promoting the analysis of tissue gene expression profiles and cell subpopulations, respectively. We bring into focus how the field is also largely influenced by increasingly accessible proteome profiling techniques. In unison, global transcriptional and protein expression analyses allow for increased understanding of cellular behavior and pathogenic pathways under pathologic stimuli including stress, inflammation, low-density lipoprotein accumulation, increased calcium and phosphate levels, and vascular injury. We also look at how direct investigation of protein signatures paves the way for identification of targetable pathways for pharmacologic intervention. Here, we note that imaging techniques, once a clinical diagnostic tool for late-stage CAVD, have since been refined to address a clinical need to identify microcalcifications using positron emission tomography/computed tomography and even detect in vivo cellular events indicative of early stage CAVD and map the expression of identified proteins in animal models. Together, these techniques generate a holistic approach to CAVD investigation, with the potential to identify additional novel regulatory pathways.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Perfilação da Expressão Gênica , Calcinose/genética , Calcinose/metabolismo
6.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 44(3): 584-602, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205639

RESUMO

Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.


Assuntos
Doenças Cardiovasculares , Hiperfosfatemia , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Fosfatos/metabolismo , Doenças Cardiovasculares/metabolismo , Hiperfosfatemia/tratamento farmacológico , Calcificação Vascular/etiologia , Hormônios/uso terapêutico
8.
Artigo em Inglês | MEDLINE | ID: mdl-38957985

RESUMO

Institutional support is crucial for the successful career advancement of all faculty but in particular those who are women. Evolving from the past, in which gender disparities were prevalent in many institutions, recent decades have witnessed significant progress in supporting the career advancement of women faculty in science and academic medicine. However, continued advancement is necessary as previously unrecognized needs and new opportunities for improvement emerge. To identify the needs, opportunities, and potential challenges encountered by women faculty, the Women's Leadership Committee of the Arteriosclerosis, Thrombosis, and Vascular Biology Council developed an initiative termed GROWTH (Generating Resources and Opportunities for Women in Technology and Health). The committee designed a survey questionnaire and interviewed 19 leaders with roles and responsibilities in faculty development from a total of 12 institutions across various regions of the United States. The results were compiled, analyzed, and discussed. Based on our interviews and analyses, we present the current status of these representative institutions in supporting faculty development, highlighting efforts specific to women faculty. Through the experiences, insights, and vision of these leaders, we identified success stories, challenges, and future priorities. Our article provides a primer and a snapshot of institutional efforts to support the advancement of women faculty. Importantly, this article can serve as a reference and resource for academic entities seeking ideas to gauge their commitment level to women faculty and to implement new initiatives. Additionally, this article can provide guidance and strategies for women faculty as they seek support and resources from their current or prospective institutions when pursuing new career opportunities.

9.
Circulation ; 148(8): 661-678, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427430

RESUMO

BACKGROUND: Fewer than 50% of patients who develop aortic valve calcification have concomitant atherosclerosis, implying differential pathogenesis. Although circulating extracellular vesicles (EVs) act as biomarkers of cardiovascular diseases, tissue-entrapped EVs are associated with early mineralization, but their cargoes, functions, and contributions to disease remain unknown. METHODS: Disease stage-specific proteomics was performed on human carotid endarterectomy specimens (n=16) and stenotic aortic valves (n=18). Tissue EVs were isolated from human carotid arteries (normal, n=6; diseased, n=4) and aortic valves (normal, n=6; diseased, n=4) by enzymatic digestion, (ultra)centrifugation, and a 15-fraction density gradient validated by proteomics, CD63-immunogold electron microscopy, and nanoparticle tracking analysis. Vesiculomics, comprising vesicular proteomics and small RNA-sequencing, was conducted on tissue EVs. TargetScan identified microRNA targets. Pathway network analyses prioritized genes for validation in primary human carotid artery smooth muscle cells and aortic valvular interstitial cells. RESULTS: Disease progression drove significant convergence (P<0.0001) of carotid artery plaque and calcified aortic valve proteomes (2318 proteins). Each tissue also retained a unique subset of differentially enriched proteins (381 in plaques; 226 in valves; q<0.05). Vesicular gene ontology terms increased 2.9-fold (P<0.0001) among proteins modulated by disease in both tissues. Proteomics identified 22 EV markers in tissue digest fractions. Networks of proteins and microRNA targets changed by disease progression in both artery and valve EVs revealed shared involvement in intracellular signaling and cell cycle regulation. Vesiculomics identified 773 proteins and 80 microRNAs differentially enriched by disease exclusively in artery or valve EVs (q<0.05); multiomics integration found tissue-specific EV cargoes associated with procalcific Notch and Wnt signaling in carotid arteries and aortic valves, respectively. Knockdown of tissue-specific EV-derived molecules FGFR2, PPP2CA, and ADAM17 in human carotid artery smooth muscle cells and WNT5A, APP, and APC in human aortic valvular interstitial cells significantly modulated calcification. CONCLUSIONS: The first comparative proteomics study of human carotid artery plaques and calcified aortic valves identifies unique drivers of atherosclerosis versus aortic valve stenosis and implicates EVs in advanced cardiovascular calcification. We delineate a vesiculomics strategy to isolate, purify, and study protein and RNA cargoes from EVs entrapped in fibrocalcific tissues. Integration of vesicular proteomics and transcriptomics by network approaches revealed novel roles for tissue EVs in modulating cardiovascular disease.


Assuntos
Estenose da Valva Aórtica , Aterosclerose , Calcinose , Vesículas Extracelulares , MicroRNAs , Humanos , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Multiômica , Calcinose/metabolismo , Células Cultivadas , MicroRNAs/metabolismo , Aterosclerose/patologia , Via de Sinalização Wnt , Vesículas Extracelulares/metabolismo
10.
Circulation ; 148(19): 1459-1478, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850387

RESUMO

BACKGROUND: Interferon-γ (IFNγ) signaling plays a complex role in atherogenesis. IFNγ stimulation of macrophages permits in vitro exploration of proinflammatory mechanisms and the development of novel immune therapies. We hypothesized that the study of macrophage subpopulations could lead to anti-inflammatory interventions. METHODS: Primary human macrophages activated by IFNγ (M(IFNγ)) underwent analyses by single-cell RNA sequencing, time-course cell-cluster proteomics, metabolite consumption, immunoassays, and functional tests (phagocytic, efferocytotic, and chemotactic). RNA-sequencing data were analyzed in LINCS (Library of Integrated Network-Based Cellular Signatures) to identify compounds targeting M(IFNγ) subpopulations. The effect of compound BI-2536 was tested in human macrophages in vitro and in a murine model of atherosclerosis. RESULTS: Single-cell RNA sequencing identified 2 major clusters in M(IFNγ): inflammatory (M(IFNγ)i) and phagocytic (M(IFNγ)p). M(IFNγ)i had elevated expression of inflammatory chemokines and higher amino acid consumption compared with M(IFNγ)p. M(IFNγ)p were more phagocytotic and chemotactic with higher Krebs cycle activity and less glycolysis than M(IFNγ)i. Human carotid atherosclerotic plaques contained 2 such macrophage clusters. Bioinformatic LINCS analysis using our RNA-sequencing data identified BI-2536 as a potential compound to decrease the M(IFNγ)i subpopulation. BI-2536 in vitro decreased inflammatory chemokine expression and secretion in M(IFNγ) by shrinking the M(IFNγ)i subpopulation while expanding the M(IFNγ)p subpopulation. BI-2536 in vivo shifted the phenotype of macrophages, modulated inflammation, and decreased atherosclerosis and calcification. CONCLUSIONS: We characterized 2 clusters of macrophages in atherosclerosis and combined our cellular data with a cell-signature drug library to identify a novel compound that targets a subset of macrophages in atherosclerosis. Our approach is a precision medicine strategy to identify new drugs that target atherosclerosis and other inflammatory diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Redes Reguladoras de Genes , Macrófagos/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/metabolismo , RNA/metabolismo , Biologia
11.
Basic Res Cardiol ; 119(2): 193-213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329498

RESUMO

The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.


Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Humanos , Macrófagos , Colágeno , Estresse Mecânico
12.
Circ Res ; 131(11): 873-889, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36263780

RESUMO

BACKGROUND: Activated macrophages contribute to the pathogenesis of vascular disease. Vein graft failure is a major clinical problem with limited therapeutic options. PCSK9 (proprotein convertase subtilisin/kexin 9) increases low-density lipoprotein (LDL)-cholesterol levels via LDL receptor (LDLR) degradation. The role of PCSK9 in macrophage activation and vein graft failure is largely unknown, especially through LDLR-independent mechanisms. This study aimed to explore a novel mechanism of macrophage activation and vein graft disease induced by circulating PCSK9 in an LDLR-independent fashion. METHODS: We used Ldlr-/- mice to examine the LDLR-independent roles of circulating PCSK9 in experimental vein grafts. Adeno-associated virus (AAV) vector encoding a gain-of-function mutant of PCSK9 (rAAV8/D377Y-mPCSK9) induced hepatic PCSK9 overproduction. To explore novel inflammatory targets of PCSK9, we used systems biology in Ldlr-/- mouse macrophages. RESULTS: In Ldlr-/- mice, AAV-PCSK9 increased circulating PCSK9, but did not change serum cholesterol and triglyceride levels. AAV-PCSK9 promoted vein graft lesion development when compared with control AAV. In vivo molecular imaging revealed that AAV-PCSK9 increased macrophage accumulation and matrix metalloproteinase activity associated with decreased fibrillar collagen, a molecular determinant of atherosclerotic plaque stability. AAV-PCSK9 induced mRNA expression of the pro-inflammatory mediators IL-1ß (interleukin-1 beta), TNFα (tumor necrosis factor alpha), and MCP-1 (monocyte chemoattractant protein-1) in peritoneal macrophages underpinned by an in vitro analysis of Ldlr-/- mouse macrophages stimulated with endotoxin-free recombinant PCSK9. A combination of unbiased global transcriptomics and new network-based hyperedge entanglement prediction analysis identified the NF-κB (nuclear factor-kappa B) signaling molecules, lectin-like oxidized LOX-1 (LDL receptor-1), and SDC4 (syndecan-4) as potential PCSK9 targets mediating pro-inflammatory responses in macrophages. CONCLUSIONS: Circulating PCSK9 induces macrophage activation and vein graft lesion development via LDLR-independent mechanisms. PCSK9 may be a potential target for pharmacologic treatment for this unmet medical need.


Assuntos
Ativação de Macrófagos , Pró-Proteína Convertase 9 , Animais , Camundongos , Colesterol , Lipoproteínas LDL/metabolismo , NF-kappa B , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Subtilisinas
13.
Arterioscler Thromb Vasc Biol ; 43(3): 417-426, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727519

RESUMO

Despite devastating clinical sequelae of calcific aortic valve disease that range from left ventricular remodeling to arrhythmias, heart failure, and early death, the molecular insights into disease initiation and progression are limited and pharmacotherapies remain unavailable. The pathobiology of calcific aortic valve disease is complex and comprehensive studies are challenging valvular calcification is heterogeneous and occurs preferentially on the aortic surface, along a fibrocalcific spectrum. Here, we review efforts to study (epi-)genomic, transcriptomic, proteomic, and metabolomic aspects of aortic valve calcification in combination with network medicine-/systems biology-based strategies to integrate multilayered omics datasets and prioritize druggable targets for experimental validation studies. Ultimately, such holistic approach efforts may open therapeutic avenues that go beyond invasive and costly valve replacement therapy.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Humanos , Proteômica , Multiômica , Estenose da Valva Aórtica/tratamento farmacológico
14.
Arterioscler Thromb Vasc Biol ; 43(1): 15-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412195

RESUMO

Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.


Assuntos
Doenças Cardiovasculares , Calcificação Vascular , Doenças Vasculares , Humanos , Calcificação Vascular/patologia , Doenças Vasculares/genética , Doenças Vasculares/patologia , Músculo Liso Vascular/patologia , Doenças Cardiovasculares/patologia , Miócitos de Músculo Liso/patologia
15.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795519

RESUMO

Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE-/- mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.


Assuntos
Calcinose/induzido quimicamente , Difosfonatos/efeitos adversos , Vesículas Extracelulares/efeitos dos fármacos , Placa Aterosclerótica/complicações , Calcificação Vascular/induzido quimicamente , Animais , Células Cultivadas , Análise de Elementos Finitos , Humanos , Hidrogéis , Técnicas In Vitro , Camundongos , Camundongos Knockout para ApoE
16.
Eur Heart J ; 44(10): 885-898, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36660854

RESUMO

AIMS: Calcific aortic valve disease (CAVD) is the most common valve disease, which consists of a chronic interplay of inflammation, fibrosis, and calcification. In this study, sortilin (SORT1) was identified as a novel key player in the pathophysiology of CAVD, and its role in the transformation of valvular interstitial cells (VICs) into pathological phenotypes is explored. METHODS AND RESULTS: An aortic valve (AV) wire injury (AVWI) mouse model with sortilin deficiency was used to determine the effects of sortilin on AV stenosis, fibrosis, and calcification. In vitro experiments employed human primary VICs cultured in osteogenic conditions for 7, 14, and 21 days; and processed for imaging, proteomics, and transcriptomics including single-cell RNA-sequencing (scRNA-seq). The AVWI mouse model showed reduced AV fibrosis, calcification, and stenosis in sortilin-deficient mice vs. littermate controls. Protein studies identified the transition of human VICs into a myofibroblast-like phenotype mediated by sortilin. Sortilin loss-of-function decreased in vitro VIC calcification. ScRNA-seq identified 12 differentially expressed cell clusters in human VIC samples, where a novel combined inflammatory myofibroblastic-osteogenic VIC (IMO-VIC) phenotype was detected with increased expression of SORT1, COL1A1, WNT5A, IL-6, and serum amyloid A1. VICs sequenced with sortilin deficiency showed decreased IMO-VIC phenotype. CONCLUSION: Sortilin promotes CAVD by mediating valvular fibrosis and calcification, and a newly identified phenotype (IMO-VIC). This is the first study to examine the role of sortilin in valvular calcification and it may render it a therapeutic target to inhibit IMO-VIC emergence by simultaneously reducing inflammation, fibrosis, and calcification, the three key pathological processes underlying CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Animais , Camundongos , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/metabolismo , Constrição Patológica , Células Cultivadas , Fibrose
17.
Circulation ; 145(7): 531-548, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35157519

RESUMO

BACKGROUND: Rheumatic heart valve disease (RHVD) is a leading cause of cardiovascular death in low- and middle-income countries and affects predominantly women. The underlying mechanisms of chronic valvular damage remain unexplored and regulators of sex predisposition are unknown. METHODS: Proteomics analysis of human heart valves (nondiseased aortic valves, nondiseased mitral valves [NDMVs], valves from patients with rheumatic aortic valve disease, and valves from patients with rheumatic mitral valve disease; n=30) followed by system biology analysis identified ProTα (prothymosin alpha) as a protein associated with RHVD. Histology, multiparameter flow cytometry, and enzyme-linked immunosorbent assay confirmed the expression of ProTα. In vitro experiments using peripheral mononuclear cells and valvular interstitial cells were performed using multiparameter flow cytometry and quantitative polymerase chain reaction. In silico analysis of the RHVD and Streptococcuspyogenes proteomes were used to identify mimic epitopes. RESULTS: A comparison of NDMV and nondiseased aortic valve proteomes established the baseline differences between nondiseased aortic and mitral valves. Thirteen unique proteins were enriched in NDMVs. Comparison of NDMVs versus valves from patients with rheumatic mitral valve disease and nondiseased aortic valves versus valves from patients with rheumatic aortic valve disease identified 213 proteins enriched in rheumatic valves. The expression of the 13 NDMV-enriched proteins was evaluated across the 213 proteins enriched in diseased valves, resulting in the discovery of ProTα common to valves from patients with rheumatic mitral valve disease and valves from patients with rheumatic aortic valve disease. ProTα plasma levels were significantly higher in patients with RHVD than in healthy individuals. Immunoreactive ProTα colocalized with CD8+ T cells in RHVD. Expression of ProTα and estrogen receptor alpha correlated strongly in circulating CD8+ T cells from patients with RHVD. Recombinant ProTα induced expression of the lytic proteins perforin and granzyme B by CD8+ T cells as well as higher estrogen receptor alpha expression. In addition, recombinant ProTα increased human leukocyte antigen class I levels in valvular interstitial cells. Treatment of CD8+ T cells with specific estrogen receptor alpha antagonist reduced the cytotoxic potential promoted by ProTα. In silico analysis of RHVD and Spyogenes proteomes revealed molecular mimicry between human type 1 collagen epitope and bacterial collagen-like protein, which induced CD8+ T-cell activation in vitro. CONCLUSIONS: ProTα-dependent CD8+ T-cell cytotoxicity was associated with estrogen receptor alpha activity, implicating ProTα as a potential regulator of sex predisposition in RHVD. ProTα facilitated recognition of type 1 collagen mimic epitopes by CD8+ T cells, suggesting mechanisms provoking autoimmunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Colágeno Tipo I/metabolismo , Receptor alfa de Estrogênio/metabolismo , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sequência de Aminoácidos , Colágeno Tipo I/química , Biologia Computacional/métodos , Suscetibilidade a Doenças , Epitopos de Linfócito T/imunologia , Doenças das Valvas Cardíacas/diagnóstico , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteoma , Proteômica/métodos , Cardiopatia Reumática/diagnóstico , Cardiopatia Reumática/etiologia , Cardiopatia Reumática/metabolismo , Relação Estrutura-Atividade , Timosina/química , Timosina/genética , Timosina/metabolismo
18.
Circ Res ; 128(9): 1371-1397, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33914608

RESUMO

Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.


Assuntos
Estenose da Valva Aórtica/etiologia , Valva Aórtica/patologia , Calcinose/etiologia , Biologia Computacional/métodos , Valva Aórtica/fisiologia , Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Fenômenos Biomecânicos/fisiologia , Calcinose/genética , Calcinose/fisiopatologia , Calcinose/cirurgia , Progressão da Doença , Descoberta de Drogas , Epigênese Genética , Expressão Gênica , Genômica , Insuficiência Cardíaca/etiologia , Humanos , Espectrometria de Massas , Ilustração Médica , Metabolômica , Fenótipo , Proteômica , Substituição da Valva Aórtica Transcateter , Transcriptoma
19.
Eur Heart J ; 43(7): 683-697, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-34849696

RESUMO

Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica/patologia , Estenose da Valva Aórtica/complicações , Calcinose/complicações , Células Cultivadas , Humanos , Osteogênese
20.
J Lipid Res ; 63(8): 100242, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724702

RESUMO

Elevated circulating lipoprotein (a) [Lp(a)] is associated with an increased risk of first and recurrent cardiovascular events; however, the effect of baseline Lp(a) levels on long-term outcomes in an elderly population is not well understood. The current single-center prospective study evaluated the association of Lp(a) levels with incident acute coronary syndrome to identify populations at risk of future events. Lp(a) concentration was assessed in 755 individuals (mean age of 71.9 years) within the community and followed for up to 8 years (median time to event, 4.5 years; interquartile range, 2.5-6.5 years). Participants with clinically relevant high levels of Lp(a) (>50 mg/dl) had an increased absolute incidence rate of ASC of 2.00 (95% CI, 1.0041) over 8 years (P = 0.04). Moreover, Kaplan-Meier cumulative event analyses demonstrated the risk of ASC increased when compared with patients with low (<30 mg/dl) and elevated (30-50 mg/dl) levels of Lp(a) over 8 years (Gray's test; P = 0.16). Within analyses adjusted for age and BMI, the hazard ratio was 2.04 (95% CI, 1.0-4.2; P = 0.05) in the high versus low Lp(a) groups. Overall, this study adds support for recent guidelines recommending a one-time measurement of Lp(a) levels in cardiovascular risk assessment to identify subpopulations at risk and underscores the potential utility of this marker even among older individuals at a time when potent Lp(a)-lowering agents are undergoing evaluation for clinical use.


Assuntos
Lipoproteína(a) , Idoso , Biomarcadores , Humanos , Masculino , Estudos Prospectivos , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA