Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagn Interv Imaging ; 102(11): 683-690, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34099435

RESUMO

PURPOSE: The purpose of this study was to develop and evaluate an algorithm that can automatically estimate the amount of coronary artery calcium (CAC) from unenhanced electrocardiography (ECG)-gated computed tomography (CT) cardiac volume acquisitions by using convolutional neural networks (CNN). MATERIALS AND METHODS: The method used a set of five CNN with three-dimensional (3D) U-Net architecture trained on a database of 783 CT examinations to detect and segment coronary artery calcifications in a 3D volume. The Agatston score, the conventional CAC scoring, was then computed slice by slice from the resulting segmentation mask and compared to the ground truth manually estimated by radiologists. The quality of the estimation was assessed with the concordance index (C-index) on CAC risk category on a separate testing set of 98 independent CT examinations. RESULTS: The final model yielded a C-index of 0.951 on the testing set. The remaining errors of the method were mainly observed on small-size and/or low-density calcifications, or calcifications located near the mitral valve or ring. CONCLUSION: The deep learning-based method proposed here to compute automatically the CAC score from unenhanced-ECG-gated cardiac CT is fast, robust and yields accuracy similar to those of other artificial intelligence methods, which could improve workflow efficiency, eliminating the time spent on manually selecting coronary calcifications to compute the Agatston score.


Assuntos
Cálcio , Aprendizado Profundo , Inteligência Artificial , Vasos Coronários/diagnóstico por imagem , Eletrocardiografia , Humanos , Tomografia Computadorizada por Raios X
2.
Diagn Interv Imaging ; 102(11): 669-674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312111

RESUMO

PURPOSE: The 2020 edition of these Data Challenges was organized by the French Society of Radiology (SFR), from September 28 to September 30, 2020. The goals were to propose innovative artificial intelligence solutions for the current relevant problems in radiology and to build a large database of multimodal medical images of ultrasound and computed tomography (CT) on these subjects from several French radiology centers. MATERIALS AND METHODS: This year the attempt was to create data challenge objectives in line with the clinical routine of radiologists, with less preprocessing of data and annotation, leaving a large part of the preprocessing task to the participating teams. The objectives were proposed by the different organizations depending on their core areas of expertise. A dedicated platform was used to upload the medical image data, to automatically anonymize the uploaded data. RESULTS: Three challenges were proposed including classification of benign or malignant breast nodules on ultrasound examinations, detection and contouring of pathological neck lymph nodes from cervical CT examinations and classification of calcium score on coronary calcifications from thoracic CT examinations. A total of 2076 medical examinations were included in the database for the three challenges, in three months, by 18 different centers, of which 12% were excluded. The 39 participants were divided into six multidisciplinary teams among which the coronary calcification score challenge was solved with a concordance index > 95%, and the other two with scores of 67% (breast nodule classification) and 63% (neck lymph node calcifications).


Assuntos
Inteligência Artificial , Tomografia Computadorizada por Raios X , Humanos , Radiologistas , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA