Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 120929, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669878

RESUMO

Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.


Assuntos
Sulfato de Cálcio , Fósforo , Sulfato de Cálcio/química , Sulfato de Cálcio/análise , Fósforo/análise , Fósforo/química , Gerenciamento de Resíduos/métodos
2.
Environ Sci Pollut Res Int ; 30(15): 43778-43794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662430

RESUMO

Phosphoric acid manufacturing generates large amounts of phosphogypsum (PG); a by-product generally disposed in the surface or evacuated in the seawater without any pretreatment. Phosphogypsum may host non-negligible amounts of valuable elements such as rare earth elements (REEs), which are critical elements on the global market. Surface disposal of PG may be a sustainable option to allow further processing in order to recover valuable elements. However, surface disposal exposes PG to atmospheric conditions (e.g., water, oxygen) which may increase their reactivity and accelerate the release rate of chemical species. This study aims to evaluate the trace element release rate from PG at atmospheric conditions. The studied PG samples were collected from a Moroccan phosphate treatment plant. The samples were characterized for their (i) chemical composition using inductively coupled plasma optical emission spectrometry (ICP-OES) for major elements and inductively coupled plasma mass spectrometry (ICP-MS) for trace elements; (ii) mineralogical composition by X-ray diffraction (XRD), scanning electron microscope equipped with energy-dispersive spectrometer (SEM-EDS), laser-induced breakdown spectroscopy (LIBS), and the mineral chemical composition was analyzed by electron probe microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS); and (iii) chemical species release rate using leaching tests over 24 h at 25 and 60 °C. Chemically, the PG samples were mainly composed of Ca (23.03-23.35 wt.%), S (17.65-17.71 wt.%), and Si (0.75-0.82 wt.%), and non-negligible amounts of trace elements: REE (344-349 ppm), Cd (3.5-7.4 ppm), U (9.3-27.4 ppm). Mineralogically, the PGs are mainly formed by gypsum (94.2-95.9 wt.%) and quartz (1.67-1.76 wt.%). In terms of chemical species release, the PGs showed a higher reactivity at 60 °C compared to room temperature with a higher release rate at the beginning of the leaching tests. Quantitatively, the PG samples released 3.57-4.11 µg/L/day of REE, 3.18-17.29 µg/L/day of U, and 1.67-5.49 µg/L/day of Cd. Based on the leaching results, we concluded that the trace elements (e.g., U, Cd, REE) are incorporated in PG crystal lattice, which may explain their low concentrations in the leachates. Consequently, total digestion of PG matrix is required to solubilize REE.


Assuntos
Oligoelementos , Sulfato de Cálcio/química , Cádmio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA