Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245629

RESUMO

Depression is a disabling and highly prevalent psychiatric illness. Multiple studies have linked glutamatergic dysfunction with the pathophysiology of depression, but the exact alterations in the glutamatergic system that contribute to depressive-like behaviors are not fully understood. Recent evidence suggests that a decreased level in neuronal glutamate transporter (EAAT3), known to control glutamate levels and limit the activation of glutamate receptors at synaptic sites, may contribute to the manifestation of a depressive phenotype. Here, we tested the possibility that increased EAAT3 expression at excitatory synapses could reduce the susceptibility of mice to develop depressive-like behaviors when challenged to a 5-week unpredictable chronic mild stress (UCMS) protocol. Mice overexpressing EAAT3 in the forebrain (EAAT3glo/CMKII) and control littermates (EAAT3glo) were assessed for depressive-like behaviors and long-term memory performance after being subjected to UCMS conditions. We found that, after UCMS, EAAT3glo/CMKII mice did not exhibit depressive-like behaviors or memory alterations observed in control mice. Moreover, we found that EAAT3glo/CMKII mice did not show alterations in phasic dopamine release in the nucleus accumbens neither in long-term synaptic plasticity in the CA1 region of the hippocampus after UCMS, as observed in control littermates. Altogether these results suggest that forebrain EAAT3 overexpression may be related to a resilient phenotype, both at behavioral and functional level, to the deleterious effect of chronic stress, highlighting the importance of neuronal EAAT3 in the pathophysiology of depressive-like behaviors.

2.
Invest Ophthalmol Vis Sci ; 61(3): 3, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150246

RESUMO

Purpose: In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals. Methods: Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices. Results: Activation of CB1R with WIN55212-2 selectively increased the frequency of GABAergic, but not glycinergic sIPSC in types 2, 3a, and 3b OFF BCs, and had no effect on inhibitory activity in type 4 OFF BCs. The increase in GABAergic activity was eliminated in axotomized BCs and can be suppressed by blocking CB1R with AM251 or GABAA and GABAρ receptors with SR-95531 and TPMPA, respectively. In all OFF BC types tested, a brief application of glutamate to the outer plexiform layer elicited gIPSCs comprising GABAergic and glycinergic components that were unaffected by CB1R activation. However, blocking CB1R selectively increased GABAergic gIPSCs, supporting a role for endocannabinoid signaling in the regulation of glutamate-evoked GABAergic inhibitory feedback to OFF BCs. Conclusions: CB1R activation shape types 2, 3a, and 3b OFF BC responses by selectively regulate GABAergic feedback inhibition at their axon terminals, thus cannabinoid signaling might play an important role in the fine-tuning of visual signal processing in the mammalian inner retina.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Bipolares da Retina/fisiologia , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Animais , Benzoxazinas/farmacologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Endocanabinoides/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Ácido Glutâmico/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/efeitos dos fármacos , Retina , Células Bipolares da Retina/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA