Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769134

RESUMO

The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.


Assuntos
Medicina , Neoplasias , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108352

RESUMO

The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Infecções por Citomegalovirus , Adulto , Animais , Humanos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Infecções por Citomegalovirus/genética , Regiões Promotoras Genéticas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Psychiatr Danub ; 35(Suppl 2): 296-301, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37800244

RESUMO

BACKGROUND: The COVID-19 pandemic had a significant impact on the mental health of medical personnel worldwide, leading to increased levels of anxiety and depression. This study aimed to compare anxiety and depression levels among healthcare workers during the initial wave of the pandemic in April-May 2020 and the post-pandemic period in January-May 2023 in Russia. METHODS: Data from two similar surveys conducted during the respective periods were combined, and a case-control matching approach was used to ensure compatibility between the two samples. The Hospital Anxiety and Depression Scale (HADS) was used to assess anxiety and depression levels. RESULTS: The mean total score for Anxiety subscale in 2020 was 4.126 (SD = 3.042), and in 2023 it increased to 6.632 (SD = 4.132) (F=20.751, df (1, 172), p<0.001, η2p=0.108). Similarly, the mean total score for Depression subscale increased from 3.253 (SD = 2.616) in 2020 to 4.115 (SD = 2.939) in 2023 (F=4.177, df (1, 172), p=0.043, η2p=0.024). The proportion of healthcare workers with higher-than-normal levels of anxiety increased from 16.09% in 2020 to 39.08% in 2023, whereas the effect size for depression remained negligible. The increase in anxiety severity was contrary to previous longitudinal studies showing a decrease in anxiety and depression levels after an initial increase during the pandemic. CONCLUSION: The increase in anxiety and depression levels in healthcare workers in 2023 may be attributed to other factors like "special military operation" in Ukraine, sanctions, and announcement of partial mobilization in September 2022. These factors could be perceived as more serious adverse factors, leading to increased anxiety levels.


Assuntos
COVID-19 , Depressão , Humanos , Depressão/epidemiologia , Pandemias , COVID-19/epidemiologia , Ansiedade/epidemiologia , Pessoal de Saúde , Federação Russa/epidemiologia
4.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499347

RESUMO

A library of active genome regulatory elements (putative promoters and enhancers) from MIA PaCa-2 pancreatic adenocarcinoma cells was constructed using a specially designed lentiviral vector and a massive parallel reporter assay (ChIP-lentiMPRA). Chromatin immunoprecipitation of the cell genomic DNA by H3K27ac antibodies was used for primary enrichment of the library for regulatory elements. Totally, 11,264 unique genome regions, many of which are capable of enhancing the expression of the CopGFP reporter gene from the minimal CMV promoter, were identified. The regions tend to be located near promoters. Based on the proximity assay, we found an enrichment of highly expressed genes among those associated with three or more mapped distal regions (2 kb distant from the 5'-ends of genes). It was shown significant enrichment of genes related to carcinogenesis or Mia PaCa-2 cell identity genes in this group. In contrast, genes associated with 1-2 distal regions or only with proximal regions (within 2 kbp of the 5'-ends of genes) are more often related to housekeeping functions. Thus, ChIP-lentiMPRA is a useful strategy for creating libraries of regulatory elements for the study of tumor-specific gene transcription.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Elementos Facilitadores Genéticos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Regiões Promotoras Genéticas , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502287

RESUMO

Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM-CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT-GM-CSF-danger signal system by means of artificial cancer specific promoters or a modified delivery system.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Imunoterapia/métodos , Neoplasias/terapia , Animais , Vacinas Anticâncer/farmacologia , Genes Transgênicos Suicidas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Pró-Fármacos/farmacologia , Timidina Quinase/genética , Timidina Quinase/farmacologia
6.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804861

RESUMO

Cancer-associated fibroblasts (CAF) are attractive therapeutic targets in the tumor microenvironment. The possibility of using CAFs as a source of therapeutic molecules is a challenging approach in gene therapy. This requires transcriptional targeting of transgene expression by cis-regulatory elements (CRE). Little is known about which CREs can provide selective transgene expression in CAFs. We hypothesized that the promoters of FAP, CXCL12, IGFBP2, CTGF, JAG1, SNAI1, and SPARC genes, the expression of whose is increased in CAFs, could be used for transcriptional targeting. Analysis of the transcription of the corresponding genes revealed that unique transcription in model CAFs was characteristic for the CXCL12 and FAP genes. However, none of the promoters in luciferase reporter constructs show selective activity in these fibroblasts. The CTGF, IGFBP2, JAG1, and SPARC promoters can provide higher transgene expression in fibroblasts than in cancer cells, but the nonspecific viral promoters CMV, SV40, and the recently studied universal PCNA promoter have the same features. The patterns of changes in activity of various promoters relative to each other observed for human cell lines were similar to the patterns of activity for the same promoters both in vivo and in vitro in mouse models. Our results reveal restrictions and features for CAF transcriptional targeting.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regiões Promotoras Genéticas , Transgenes , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Endopeptidases , Gelatinases/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína Jagged-1/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Osteonectina/genética , Serina Endopeptidases/genética , Fatores de Transcrição da Família Snail/genética , Ativação Transcricional
7.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847094

RESUMO

Tumor is a complex system of interactions between cancer cells and other cells of the tumor microenvironment. The cancer-associated fibroblasts (CAFs) of the tumor microenvironment remain in close contact with the cancer cells and play an important role in cancer progression. Genetically, CAFs are more stable than cancer cells, making them an attractive target for genetic modification in gene therapy. However, the efficiency of various promoters for transgene expression in fibroblasts is scarcely studied. We performed a comparative analysis of transgene long-term expression under the control of strong cytomegalovirus promoter (pCMV), constitutive cell promoter of the PCNA gene (pPCNA), and the potentially fibroblast-specific promoter of the IGFBP2 gene (pIGFBP2). In vitro expression of the transgene under the control of pCMV in fibroblasts was decreased soon after transduction, whereas the expression was more stable under the control of pIGFBP2 and pPCNA. The efficiency of transgene expression was higher under pPCNA than that under pIGFBP2. Additionally, in a mouse model, pPCNA provided more stable and increased transgene expression in fibroblasts as compared to that under pCMV. We conclude that PCNA promoter is the most efficient for long-term expression of transgenes in fibroblasts both in vitro and in vivo.


Assuntos
Fibroblastos/metabolismo , Vetores Genéticos , Neoplasias/genética , Regiões Promotoras Genéticas , Transgenes/genética , Animais , Células 3T3 BALB , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Clonagem Molecular/métodos , Citomegalovirus/genética , Modelos Animais de Doenças , Fibroblastos/transplante , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células NIH 3T3 , Neoplasias/metabolismo , Neoplasias/patologia , Transplante Isogênico
8.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143259

RESUMO

Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/patologia , Colágeno/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/patologia , Células Híbridas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Técnicas de Cocultura , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Matriz Extracelular , Feminino , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Híbridas/metabolismo , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Transl Med ; 13: 78, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25880666

RESUMO

BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS: We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS: We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS: We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias/terapia , Polímeros/química , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Animais , Cátions , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ganciclovir/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Sítios Internos de Entrada Ribossomal/genética , Lipídeos , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoimina/química , Simplexvirus/enzimologia
10.
Metabolites ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392971

RESUMO

Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.

11.
Front Immunol ; 15: 1410564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007148

RESUMO

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Assuntos
Imunoterapia , Ligante OX40 , Animais , Ligante OX40/genética , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferência de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Polietilenoimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Polietilenoglicóis/química
12.
Biomedicines ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509656

RESUMO

Fibroblast activation protein has a unique expression profile that manifests mainly in wounds and tumors, which anticipates it as an encouraging and selective target for anticancer therapy. However, research of the therapeutic potential of FAP is limited both by legal restraints when working in vivo and by the difficulty of obtaining standardized primary cultures of FAP-positive cancer-associated fibroblasts due to their high heterogeneity. We found that 3D spheroids of FAP-positive cell lines could serve as robust and convenient models of FAP expression, in contrast to monolayers. By exposing such spheroids to various factors and compounds, it is possible to study changes in FAP expression, which are easily detected by confocal microscopy. FAP expression increases under the influence of the TGFß, does not depend on pH, and decreases during hypoxia and starvation. We believe that the proposed model could be used to organize large-scale high-throughput screening of drugs that target FAP expression.

13.
Front Mol Biosci ; 10: 1111511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825204

RESUMO

Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.

14.
Front Immunol ; 14: 1099921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006265

RESUMO

Treatment of metastatic disease remains among the most challenging tasks in oncology. One of the early events that predicts a poor prognosis and precedes the development of metastasis is the occurrence of clusters of cancer cells in the blood flow. Moreover, the presence of heterogeneous clusters of cancerous and noncancerous cells in the circulation is even more dangerous. Review of pathological mechanisms and biological molecules directly involved in the formation and pathogenesis of the heterotypic circulating tumor cell (CTC) clusters revealed their common properties, which include increased adhesiveness, combined epithelial-mesenchymal phenotype, CTC-white blood cell interaction, and polyploidy. Several molecules involved in the heterotypic CTC interactions and their metastatic properties, including IL6R, CXCR4 and EPCAM, are targets of approved or experimental anticancer drugs. Accordingly, analysis of patient survival data from the published literature and public datasets revealed that the expression of several molecules affecting the formation of CTC clusters predicts patient survival in multiple cancer types. Thus, targeting of molecules involved in CTC heterotypic interactions might be a valuable strategy for the treatment of metastatic cancers.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Oncologia
15.
Comput Struct Biotechnol J ; 21: 3964-3986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635765

RESUMO

Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.

16.
Biology (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009835

RESUMO

In this brief review, we attempt to demonstrate that the incompleteness of data, as well as the intrinsic heterogeneity of biological systems, may form very strong and possibly insurmountable barriers for researchers trying to decipher the mechanisms of the functioning of live systems. We illustrate this challenge using the two most studied organisms: E. coli, with 34.6% genes lacking experimental evidence of function, and C. elegans, with identified proteins for approximately 50% of its genes. Another striking example is an artificial unicellular entity named JCVI-syn3.0, with a minimal set of genes. A total of 31.5% of the genes of JCVI-syn3.0 cannot be ascribed a specific biological function. The human interactome mapping project identified only 5-10% of all protein interactions in humans. In addition, most of the available data are static snapshots, and it is barely possible to generate realistic models of the dynamic processes within cells. Moreover, the existing interactomes reflect the de facto interaction but not its functional result, which is an unpredictable emerging property. Perhaps the completeness of molecular data on any living organism is beyond our reach and represents an unsolvable problem in biology.

17.
Biomedicines ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884771

RESUMO

SOX9 is upregulated in the majority of pancreatic ductal adenocarcinoma cases. It is hypothesized that the increased expression of SOX9 is necessary for the formation and maintenance of tumor phenotypes in pancreatic cancer cells. In our research, we studied six pancreatic cancer cell lines, which displayed varying levels of differentiation and a range of oncogenic mutations. We chose the method of downregulation of SOX9 expression via siRNA transfection as the main method for investigating the functional role of the SOX9 factor in pancreatic cancer cells. We discovered that the downregulation of SOX9 expression in the cell lines leads to cell-line-specific changes in the expression levels of epithelial and mesenchymal protein markers. Additionally, the downregulation of SOX9 expression had a specific effect on the expression of pancreatic developmental master genes. SOX9 downregulation had the greatest effect on the expression levels of the protein regulators of cell proliferation. In three of the four cell lines studied, the transfection of siSOX9 led to a significant decrease in proliferative activity and to the activation of proapoptotic caspases in transfected cells. The acquired results demonstrate that the SOX9 protein exerts its multiple functions as a pleiotropic regulator of differentiation and a potential promoter of tumor growth in a cell-specific manner in pancreatic cancer cells.

18.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503200

RESUMO

Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFß1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFß1-induced EMT.

19.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751200

RESUMO

Nuclear proteins, like histone H2A, are promising non-viral carriers for gene delivery since they are biocompatible, biodegradable, bear intrinsic nuclear localization signal, and are easy to modify. The addition of surface-protein-binding ligand to histone H2A may increase its DNA delivery efficiency. Tumor microenvironment (TME) is a promising target for gene therapy since its surface protein repertoire is more stable than that of cancer cells. Cancer-associated fibroblasts (CAFs) are important components of TME, and one of their surface markers is beta-type platelet-derived growth factor receptor (PDGFRß). In this study, we fused histone H2A with PDGFRß-binding peptide, YG2, to create a novel non-viral fibroblast-targeting DNA carrier, H2A-YG2. The transfection efficiency of histone complexes with pDNA encoding a bicistronic reporter (enhanced green fluorescent protein, EGFP, and firefly luciferase) in PDGFRß-positive and PDGFRß-negative cells was estimated by luciferase assay and flow cytometry. The luciferase activity, percentage of transfected cells, and overall EGFP fluorescence were increased due to histone modification with YG2 only in PDGFRß-positive cells. We also estimated the internalization efficiency of DNA-carrier complexes using tetramethyl-rhodamine-labeled pDNA. The ligand fusion increased DNA internalization only in the PDGFRß-positive cells. In conclusion, we demonstrated that the H2A-YG2 carrier targeted gene delivery to PDGFRß-positive tumor stromal cells.

20.
Cancers (Basel) ; 12(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230806

RESUMO

The failure of therapies directed at targets within cancer cells highlight the necessity for a paradigm change in cancer therapy. The attention of researchers has shifted towards the disruption of cancer cell interactions with the tumor microenvironment. A typical example of such a disruption is the immune checkpoint cancer therapy that disrupts interactions between the immune and the cancer cells. The interaction of cancer antigens with T cells occurs in the immunological synapses. This is characterized by several special features, i.e., the proximity of the immune cells and their target cells, strong intercellular adhesion, and secretion of signaling cytokines into the intercellular cleft. Earlier, we hypothesized that the cancer-associated fibroblasts interacting with cancer cells through a synapse-like adhesion might play an important role in cancer tumors. Studies of the interactions between cancer cells and cancer-associated fibroblasts showed that their clusterization on the membrane surface determined their strength and specificity. The hundreds of interacting pairs are involved in the binding that may indicate the formation of synapse-like structures. These interactions may be responsible for successful metastasis of cancer cells, and their identification and disruption may open new therapeutic possibilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA