RESUMO
Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.
Assuntos
Complexo Antígeno-Anticorpo , Plaquetas , Glicoproteínas da Membrana de Plaquetas , Multimerização Proteica , Anticorpos de Domínio Único , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Humanos , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/genética , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologiaRESUMO
New antithrombotic medications with less effect on haemostasis are needed for the long-term treatment of acute coronary syndromes (ACS). The platelet receptor glycoprotein VI (GPVI) is critical in atherothrombosis, mediating platelet activation at atherosclerotic plaque. The inhibition of spleen tyrosine kinase (Syk) has been shown to block GPVI-mediated platelet function. The aim of our study was to investigate if the Syk inhibitor fostamatinib could be repurposed as an antiplatelet drug, either alone or in combination with conventional antiplatelet therapy. The effect of the active metabolite of fostamatinib (R406) was assessed on platelet activation and function induced by atherosclerotic plaque and a range of agonists in the presence and absence of the commonly used antiplatelet agents aspirin and ticagrelor. The effects were determined ex vivo using blood from healthy volunteers and aspirin- and ticagrelor-treated patients with ACS. Fostamatinib was also assessed in murine models of thrombosis. R406 mildly inhibited platelet responses induced by atherosclerotic plaque homogenate, likely due to GPVI inhibition. The anti-GPVI effects of R406 were amplified by the commonly-used antiplatelet medications aspirin and ticagrelor; however, the effects of R406 were concentration-dependent and diminished in the presence of plasma proteins, which may explain why fostamatinib did not significantly inhibit thrombosis in murine models. For the first time, we demonstrate that the Syk inhibitor R406 provides mild inhibition of platelet responses induced by atherosclerotic plaque and that this is mildly amplified by aspirin and ticagrelor.
Assuntos
Placa Aterosclerótica , Trombose , Aminopiridinas , Animais , Aspirina , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Camundongos , Morfolinas , Oxazinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Piridinas/farmacologia , Pirimidinas , Trombose/tratamento farmacológico , Ticagrelor/farmacologiaRESUMO
Acute coronary syndromes (ACS) are a global cause of mortality and morbidity that affect millions of lives worldwide. Following atherosclerotic plaque rupture, platelet activation and aggregation are the two major elements that initiate thrombus formation inside a coronary artery, which can obstruct blood flow and cause myocardial ischemia; ergo, antiplatelet therapy forms a major part of the treatment strategy for ACS. Patients with ACS routinely receive dual antiplatelet therapy (DAPT), which consists of aspirin and a platelet P2Y12 inhibitor to both treat and prevent atherothrombosis. Use of platelet glycoprotein (GP) IIb/IIIa inhibitors is now limited due to the risk of severe bleeding and thrombocytopenia. Thus, administration of GPIIb/IIIa inhibitors is generally restricted to bail out thrombotic events associated with PCI. Furthermore, current antiplatelet medications mainly rely on thromboxane A2 and P2Y12 inhibition, which have broad-acting effects on platelets and are known to cause bleeding, which especially limits the long-term use of these agents. In addition, not all ACS patients treated with current antiplatelet treatments are protected from recurrence of arterial thrombosis, since many platelet mechanisms and activation pathways remain uninhibited by current antiplatelet therapy. Pharmacological antagonism of novel targets involved in platelet function could shape future antiplatelet therapies that could ultimately lead to more effective or safer therapeutic approaches. In this article, we focus on inhibitors of promising targets that have not yet been introduced into clinical practice, including inhibitors of GPVI, protease-activated receptor (PAR)-4, GPIb, 5-hydroxytryptamine receptor subtype 2A (5-HT2A), protein disulfide isomerase, P-selectin and phosphoinositide 3-kinase ß.
Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Humanos , Inibidores da Agregação Plaquetária/farmacologiaRESUMO
The purpose of this study was to investigate the effects of two different types of gold nanoparticles (AuNPs) delivered by intraperitoneal (IP) injection on blood and kidney tissue changes in a mouse model. Three groups of fifteen adult male BALB/c healthy mice, weighing approximately 25-30 g, were used for the experiment and designated G1, G2, and G3, respectively. G1 mice received vehicle, whereas G2 and G3 received an IP injection of 10 mg/kg body weight of methoxy poly ethylene glycol gold nanoparticles (PEG-AuNPs) and fluorescently dye labeled gold nanoparticles (Dye-AuNPs), respectively. Hematological parameters were measured based on the standard complete blood cell count (CBC) technique. The two nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, significantly reduced most red blood cell (RBC) parameters in the groups with the exception of a nonsignificant effect on hemoglobin (HBG) levels. Both gold nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, led to a reduced RBC count, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) level when compared with the control. Notably, Dye-AuNPs and PEG-AuNPs resulted in a considerably higher RBC distribution RDW-(CV % and SD fL). Glomerular injury was suggested based on the development of hydropic degeneration and the presence of a protein-rich fluid inside the tubules. Renal tissue and blood indices changed significantly in response to the two nanoparticles, suggesting possible organ injury.
RESUMO
Cytokine storm (CS) refers to the spontaneous dysregulated and hyper-activated inflammatory reaction occurring in various clinical conditions, ranging from microbial infection to end-stage organ failure. Recently the novel coronavirus involved in COVID-19 (Coronavirus disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has been associated with the pathological phenomenon of CS in critically ill patients. Furthermore, critically ill patients suffering from CS are likely to have a grave prognosis and a higher case fatality rate. Pathologically CS is manifested as hyper-immune activation and is clinically manifested as multiple organ failure. An in-depth understanding of the etiology of CS will enable the discovery of not just disease risk factors of CS but also therapeutic approaches to modulate the immune response and improve outcomes in patients with respiratory diseases having CS in the pathogenic pathway. Owing to the grave consequences of CS in various diseases, this phenomenon has attracted the attention of researchers and clinicians throughout the globe. So in the present manuscript, we have attempted to discuss CS and its ramifications in COVID-19 and other respiratory diseases, as well as prospective treatment approaches and biomarkers of the cytokine storm. Furthermore, we have attempted to provide in-depth insight into CS from both a prophylactic and therapeutic point of view. In addition, we have included recent findings of CS in respiratory diseases reported from different parts of the world, which are based on expert opinion, clinical case-control research, experimental research, and a case-controlled cohort approach.
RESUMO
Among the most common problems facing public health today is a lack of vitamin D, which plays a role in the physiological processes of chronic illness conditions. Vitamin D deficiency in metabolic disorders has primary effects on osteoporosis, obesity, hypertension, diabetes, and cardiovascular disease (CVD). Vitamin D acts as a "co-hormone" in the various tissues of the body, and it has been found that vitamin D receptors (VDR) are present on all cell types, suggesting that vitamin D has a wide range of effects on most cells. Recently, there has been a surge in interest in assessing its roles. Vitamin D insufficiency increases the risk of diabetes because it lowers insulin sensitivity, and also raises the risk of obesity and CVD because of its effect on the body's lipid profile, particularly in terms of the prevalence of dangerously high levels of low-density lipoproteins (LDL). Furthermore, vitamin D insufficiency is often related to CVD and connected risk factors, highlighting the need to know vitamin D's functions in relation to metabolic syndrome and related processes. Through looking at previous studies, this paper explains why vitamin D is important, how deficiency is related to risk factors for metabolic syndrome through different mechanisms, and how deficiency affects CVD.
RESUMO
As per a recent study conducted by the WHO, 15.4% of all cancers are caused by infectious agents of various categories, and more than 10% of them are attributed to viruses. The emergence of COVID-19 has once again diverted the scientific community's attention toward viral diseases. Some researchers have postulated that SARS-CoV-2 will add its name to the growing list of oncogenic viruses in the long run. However, owing to the complexities in carcinogenesis of viral origin, researchers across the world are struggling to identify the common thread that runs across different oncogenic viruses. Classical pathways of viral oncogenesis have identified oncogenic mediators in oncogenic viruses, but these mediators have been reported to act on diverse cellular and multiple omics pathways. In addition to viral mediators of carcinogenesis, researchers have identified various host factors responsible for viral carcinogenesis. Henceforth owing to viral and host complexities in viral carcinogenesis, a singular mechanistic pathway remains yet to be established; hence there is an urgent need to integrate concepts from system biology, cancer microenvironment, evolutionary perspective, and thermodynamics to understand the role of viruses as drivers of cancer. In the present manuscript, we provide a holistic view of the pathogenic pathways involved in viral oncogenesis with special emphasis on alteration in the tumor microenvironment, genomic alteration, biological entropy, evolutionary selection, and host determinants involved in the pathogenesis of viral tumor genesis. These concepts can provide important insight into viral cancers, which can have an important implication for developing novel, effective, and personalized therapeutic options for treating viral cancers.
Assuntos
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Vírus Oncogênicos , Neoplasias/genética , Carcinogênese , Genômica , Microambiente TumoralRESUMO
The present study evaluated the clinical presentation and outcome of COVID-19 patients with underlying hypercreatinemia at the time of hospitalization. A retrospective observational study was conducted from the 23rd of March 2020 to the 15th of April 2021 in 1668 patients confirmed positive for COVID-19 in the Chest Disease Hospital in Srinagar, India. The results of the present study revealed that out of 1668 patients, 339 with hypercreatinemia had significantly higher rates of admission to the intensive care unit (ICU), severe manifestations of the disease, need for mechanical ventilation, and all-cause mortality. Multivariable analysis revealed that age, elevated creatinine concentrations, IL-1, D-Dimer, and Hs-Crp were independent risk factors for in-hospital mortality. After adjusted analysis, the association of creatinine levels remained strongly predictive of all-cause, in-hospital mortality (HR-5.34; CI-4.89-8.17; p ≤ 0.001). The amelioration of kidney function may be an effective method for achieving creatinemic targets and, henceforth, might be beneficial for improving outcomes in patients with COVID-19.
RESUMO
Fruit of Carissa opaca Stapf ex Haines (C. opaca) is a feed additive and is commonly used against cardiac dysfunction, fever, asthma, diarrhea, gastrointestinal ailments, and skin diseases. In this study, we aimed to evaluate the metabolic profile and antioxidant potential of C. opaca fruit against carbon tetrachloride (CCl4)-induced cardiotoxicity and testicular toxicity in rats. Gas Chromatoghraphy-Mass Spectrometry (GC-MS) analysis of C. opaca fruit for the identification of potential metabolic profile, followed by methanolic extract of C. opaca and its derived fractions including n-hexane, ethyl acetate, chloroform, butanol, and aqueous were used to assess the antioxidant potential of fruits. Ten groups of rats received different treatments and got evaluated for cardiac and testicular antioxidant enzymes, histological architecture, and serum hormonal levels. GC-MS analysis of methanolic extract of C. opaca fruit showed the presence of some bioactive metabolites like cyclodecane, diethyl 2,6-pyridine dicarboxylate, tetrahydro-geraniol, S-[2-[N, N-Dimethylamino]ethyl]morpoline, 2,3-Methylenedioxyphenol, alpha-d-Glucopyranoside, 5,10-Diethoxy-2,3,7,8-tetrahydro-1H, 6H-dipyrrolo [1,2-a; 1',2'-d] pyrazine and 1,3-Benzothiazol-2(3H)-one,3-(3,3-dimethyl-1-oxobutyl) that corresponds the medicinal properties of C. opaca fruit. Prepared fractions of C. opaca fruits mitigated the toxicity induced by CCl4 in the heart and testicular tissues of rats. Oxidative stress was caused by the inhibition of activities of glutathione and other antioxidant enzymes of the body, while on the other hand elevating the levels of nitrite and hydrogen peroxide. Treatment with C. opaca fruit extract normalized the levels of enzymes, reproductive hormones, and free radicals thus restoring the histopathological and enzymatic biomarkers towards the normal group. The study supports the indigenous use of fruits as an alternative medicine against cardiac dysfunction by providing scientific evidence of protection against CCl4-induced injuries, and it also concludes the antioxidant defensive role in testicular tissues.
RESUMO
BACKGROUND: Aspirin and platelet P2Y12 inhibitors, such as ticagrelor, suboptimally inhibit microvascular thrombosis during ST-elevation myocardial infarction. Glycoprotein (GP) IIb/IIIa inhibitors may further inhibit this but cause excessive bleeding. OBJECTIVES: We investigated whether combination of glenzocimab, a GPVI inhibitor, with aspirin and ticagrelor provides additional antithrombotic effects, as GPVI has a critical role in atherothrombosis but minimal involvement in hemostasis. METHODS: We investigated the effects of glenzocimab (monoclonal antibody Fab fragment) using blood from healthy donors and patients with acute coronary syndrome treated with aspirin and ticagrelor. Platelets were stimulated with multiple agonists, including atherosclerotic plaque, from patients undergoing carotid endarterectomy. RESULTS: Aspirin and ticagrelor partially inhibited atherosclerotic plaque-induced platelet aggregation by 48% compared with control (34 ± 3 vs 65 ± 4 U; P < .001). Plaque-induced platelet aggregation, adhesion, secretion, and activation were critically dependent on GPVI activation. Glenzocimab alone reduced plaque-induced aggregation by 75% compared with control (16 ± 4 vs 65 ± 4 U; P < .001) and by >95% when combined with aspirin and ticagrelor (3 ± 1 vs 65 ± 4 U; P < .001). Glenzocimab reduced platelet aggregation, adhesion, and thrombin generation when added to blood of aspirin- and ticagrelor-treated patients with acute coronary syndrome. Glenzocimab shared several antithrombotic effects with the GPIIb/IIIa inhibitor eptifibatide with less effect on general hemostasis assessed by rotational thromboelastometry. In a murine intravital model of ST-elevation myocardial infarction, genetic depletion of GPVI reduced microvascular thrombosis. CONCLUSION: Addition of glenzocimab to aspirin and ticagrelor enhances platelet inhibition via multiple mechanisms of atherothrombosis. Compared with a GPIIb/IIIa inhibitor, glenzocimab shares multiple antithrombotic effects, with less inhibition of mechanisms involved in general hemostasis.
Assuntos
Síndrome Coronariana Aguda , Placa Aterosclerótica , Infarto do Miocárdio com Supradesnível do Segmento ST , Trombose , Humanos , Animais , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Ticagrelor/farmacologia , Fibrinolíticos/efeitos adversos , Síndrome Coronariana Aguda/tratamento farmacológico , Ativação Plaquetária , Aspirina/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombose/tratamento farmacológico , Trombose/prevenção & controleRESUMO
Introductionï¼ Metabolism methionine and of folate play a vital function in cellular methylation reactions, DNA synthesis and epigenetic process.However, polymorphisms of methionine have received much attention in recent medical genetics research. Objectives: To ascertain whether the common polymorphisms of the MTRR (Methionine Synthase Reductase) A66G gene could play a role in affecting susceptibility to Chronic Myeloid Leukemia (CML) in Sudanese individuals. Methods: In a case-controlled study, we extracted and analyzed DNA from 200 CML patients and 100 healthy control subjects by the PCR-RFLP method. Results: We found no significant difference in age orgender between the patient group and controls. The MTRR A66G genotypes were distributed based on the Hardy-Weinberg equilibrium (p > 0.05). The variation of MTRR A66G was less significantly frequent in cases with CML (68.35%) than in controls (87%) (OR = 0.146, 95% CI = 0.162−0.662, p < 0.002). Additionally, AG and GG genotypes and G allele were reducing the CML risk (Odds ratio [OR] = 0.365; 95% CI [0.179−0.746]; p = 0.006; OR = 0.292; 95% CI [0.145−0.590]; p = 0.001 and OR = 0.146; 95% CI [0.162−0.662]; p = 0.002 and OR = 2.0; 95% CI [1.3853−2.817]; respectively, (p = 0.000)). Conclusions: Our data demonstrated that heterozygous and homozygous mutant genotypes of MTRR polymorphisms were associated with decreased risk of developing CML in the Sudanese population.
Assuntos
Predisposição Genética para Doença , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Ácido Fólico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Metionina/genéticaRESUMO
Purpose: Single-nucleotide polymorphism (SNP) in the promoter region of the IL-10 gene can increase susceptibility to tumor development. The current study aimed to explore the genotypic frequency of interleukin-10 (IL-10) rs1800896 polymorphism in newly diagnosed adult patients with acute lymphoblastic leukemia (ALL) and validate whether this SNP is a risk factor for adult ALL. Patients and Methods: This case-control study was based on a subset of newly diagnosed 154 adult patients with ALL recruited from the Radiation and Isotope Center in Khartoum (RICK) and 154 healthy controls from the same geographical area. Genomic DNA was used for the genotyping of rs1800896 polymorphism through allele-specific polymerase chain reaction (PCR) assays. Results: The genotypic frequencies of rs1800896 showed a statistically significant association of AG and AA genotypes with adult ALL (p<0.001). Combined genotypes AG+GG vs AA also showed a positive association of rs1800896 with adult ALL (OR=4.89). The allelic frequencies of G and A did not show any significant difference in adult patients with ALL compared with the control group. AG rs1800896 genotype showed an increased risk of B and T ALL (OR=2.51 and 4.70, respectively). Age at diagnosis, gender, and immunophenotype (B vs T ALL) did not exhibit any association of rs1800896 with ALL in this patient group. Conclusion: rs1800896 polymorphism is associated with an increased risk of ALL in adult patients irrespective of the age at diagnosis, gender, and immunophenotype of ALL.
RESUMO
Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.
RESUMO
BACKGROUND: Reorganization of the actin cytoskeleton is required for proper functioning of platelets following activation in response to vascular damage. Formins are a family of proteins that regulate actin polymerization and cytoskeletal organization via a number of domains including the FH2 domain. However, the role of formins in platelet spreading has not been studied in detail. OBJECTIVES: Several formin proteins are expressed in platelets so we used an inhibitor of FH2 domains (SMIFH2) to uncover the role of these proteins in platelet spreading and in maintenance of resting platelet shape. METHODS: Washed human and mouse platelets were treated with various concentrations of SMIFH2 and the effects on platelet spreading, platelet size, platelet cytoskeletal dynamics, and organization were analyzed using fluorescence and electron microscopy. RESULTS: Pretreatment with SMIFH2 completely blocks platelet spreading in both mouse and human platelets through effects on the organization and dynamics of actin and microtubules. However, platelet aggregation and secretion are unaffected. SMIFH2 also caused a decrease in resting platelet size and disrupted the balance of tubulin post-translational modification. CONCLUSIONS: These data therefore demonstrated an important role for formin-mediated actin polymerization in platelet spreading and highlighted the importance of formins in cross-talk between the actin and tubulin cytoskeletons.