Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234987

RESUMO

Currently, the bioremediation of petroleum hydrocarbons employs microbial biosurfactants because of their public acceptability, biological safety, and low cost. These organisms can degrade or detoxify organic-contaminated areas, such as marine ecosystems. The current study aimed to test the oil-biodegradation ability of the fungus Drechslera spicifera, which was isolated from contaminated soil samples in Riyadh, Saudi Arabia. We used hydrocarbon tolerance, scanning electron microscopy, DCPIP, drop-collapse, emulsification activity, recovery of biosurfactants, and germination assays to assess the biodegradation characteristics of the D. spicifera against kerosene, crude, diesel, used, and mixed oils. The results of DCPIP show that the highest oxidation (0.736 a.u.) was induced by crude oil on the 15th day. In contrast, kerosene and used oil had the highest measurements in emulsification activity and drop-collapse assays, respectively. Meanwhile, crude and used oils produced the highest amounts of biosurfactants through acid precipitation and solvent extraction assays. Furthermore, the biosurfactants stimulated the germination of tomato seeds by more than 50% compared to the control. These findings highlight the biodegradation ability of D. spicifera, which has been proven in the use of petroleum oils as the sole source of carbon. That might encourage further research to demonstrate its application in the cleaning of large, contaminated areas.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carbono , Ecossistema , Hidrocarbonetos/metabolismo , Querosene , Óleos , Petróleo/metabolismo , Arábia Saudita , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solventes
2.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630588

RESUMO

The Arabian desert is rich in different species of medicinal plants, which approved variable antimicrobial activities. Phoenix dactylifera L. is one of the medical trees rich in phenolic acids and flavonoids. The current study aimed to assess the antibacterial and antifungal properties of the silver nanoparticles (AgNPs) green-synthesized by two preparations (ethanolic and water extracts) from palm leaves. The characteristics of the produced AgNPs were tested by UV-visible spectroscopy and Transmitted Electron Microscopy (TEM). The antifungal activity of Phoenix dactylifera L. was tested against different species of Candida. Moreover, its antibacterial activity was evaluated against two Gram-positive and two Gram-negative strains. The results showed that AgNPs had a spherical larger shape than the crude extracts. AgNPs, from both preparations, had significant antimicrobial effects. The water extract had slightly higher antimicrobial activity than the ethanolic extract, as it induced more inhibitory effects against all species. That suggests the possible use of palm leaf extracts against different pathogenic bacteria and fungi instead of chemical compounds, which had economic and health benefits.


Assuntos
Nanopartículas Metálicas , Phoeniceae , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Phoeniceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Arábia Saudita , Prata/química , Prata/farmacologia , Árvores , Água
3.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641623

RESUMO

Grape seed extract (GSE) is a natural source of polyphenolic compounds and secondary metabolites, which have been tested for their possible antimicrobial activities. In the current study, we tested the antibacterial and antifungal activities of aqueous GSE and the biosynthesized silver nanoparticles loaded with GSE (GSE-AgNPs) against different pathogens. The biosynthesized GSE-AgNPs were assessed by UV spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography/mass spectrometry (GC/MS). The antimicrobial activities were assessed against different bacterial and fungal species. DLS analysis showed that GSE-AgNPs had a Z-Average of 91.89 nm while UV spectroscopy showed that GSE-AgNPs had the highest absorbance at a wavelength of ~415 nm. FTIR analysis revealed that both of GSE and GSE-AgNPs consisted of different functional groups, such as hydroxyl, alkenes, alkyne, and aromatic rings. Both FE-SEM and TEM showed that GSE-AgNPs had larger sizes and rough surfaces than GSE and AgNO3. The results showed significant antimicrobial activities of GSE-AgNPs against all tested species, unlike GSE, which had weaker and limited effects. More studies are needed to investigate the other antimicrobial activities of GSE.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Extrato de Sementes de Uva/farmacologia , Prata/química , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Difusão Dinâmica da Luz , Fungos/efeitos dos fármacos , Extrato de Sementes de Uva/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
4.
An Acad Bras Cienc ; 92(2): e20191237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638872

RESUMO

This study was designed to investigate the potential defensive strategy of Sana Makki extract (SME) against Cd-induced in vivo nephrotoxicity and its underlying mechanisms. Male albino rats were used in a thirty days study comparing control, SME-treated, CdCl2-treated, and combined SME and Cd treatment. Pre-treatment with SME significantly reduced serum kidney biomarkers (urea and creatinine), the concentration of renal KIM-1, and kidney index values. Additionally, SME also attenuated CdCl2-induced oxidative and nitrosative stress in renal tissue; significantly reducing malondialdehyde (MDA) and nitric oxide (NO) concentrations and significantly increasing antioxidant enzymes in kidney tissue. Molecularly, SME significantly upregulated antioxidant gene expression (SOD2, GR, GPx1, and CAT) caused by Cd. Notably, the augmented mRNA expression of nuclear-related factor 2 (Nrf2) by Cd was enhanced by SME administration. SME markedly suppressed the Cd-induced rise in pro-inflammatory cytokines. The combination of Cd and SME relieved the Cd-induced apoptotic damage by enhancing Bcl2 and suppressing Bax and Cas-3 levels in renal tissue. The renal tissue histoarchitecture confirmed the biochemical and molecular findings. Collectively, our data indicate that SME can counteract Cd-induced renal intoxication through anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms.


Assuntos
Cassia , Animais , Antioxidantes , Cádmio , Rim , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Senosídeos
5.
Molecules ; 26(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396590

RESUMO

The green biosynthesis of nanoparticles by plant extracts is an attractive and promising technique for medicinal applications. In the current study, we chose one of the daisy plants, Aaronsohnia factorovskyi (which grows in the Najd region, Saudi Arabia), to investigate its anti-microbial efficacy, in combination with silver nanoparticles. The biosynthesized nanoparticles were evaluated for antibacterial activity against Staphylococcus aureus, Bacillussubtilis (Gram-positive), Pseudomonas aeruginosa, and Escherichia coli, (Gram-negative) using the disc diffusion method, while the antifungal activity was assessed against Fusarium oxysporum, Fusarium solani, Helminthosporiumrostratum, and Alternariaalternata. The potential phytoconstituents of the plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques, the Field emission scanning electron microscopy (FE-SEM), Chromatography/Mass Spectrometry (GC-MS) techniques, and Zeta potential analysis. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average diameter of 104-140 nm. Biogenic Aaronsohnia factorovskyi-silver nanoparticles (AF-AgNPs) showed significant antibacterial activity against Staphylococcus aureus with inhibition zone diameter to 19.00 ± 2.94 mm, and antifungal activity against Fusarium solani, which reduced the growth of fungal yarn to 1.5 mm. The innovation of the present study is that the green synthesis of NPs, which is simple, cost-effective, provides stable nano-materials, and can be an alternative for the large-scale synthesis of silver nanoparticles.


Assuntos
Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Nanopartículas , Extratos Vegetais/farmacologia , Anti-Infecciosos/administração & dosagem , Antifúngicos/química , Bacillus subtilis/efeitos dos fármacos , Difusão , Escherichia coli/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Íons , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Nanomedicina , Pseudomonas aeruginosa/efeitos dos fármacos , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
6.
Sci Rep ; 14(1): 1297, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221517

RESUMO

One of the most promising, non-toxic, and biocompatible developments for many biological activities is the green synthesis of nanoparticles from plants. In this work, we investigated the antifungal activity of silver nanoparticles (AgNPs) biosynthesized from Rhazya stricta aqueous extract against several plant pathogenic fungi. UV-visible spectroscopy, Zeta potential analysis, Fourier-transform infrared spectroscopy (FTIR), and transmitted electron microscopy (TEM) were used to analyze the biosynthesized AgNPs. Drechslera halodes, Drechslera tetramera, Macrophomina phaseolina, Alternaria alternata, and Curvularia australiensis were tested for their potential antifungal activity. Surface Plasmon Resonance (SPR) of Aq. AgNPs and Alkaline Aq. AgNPs was observed at 405 nm and 415 nm, respectively. FTIR analysis indicated hydroxyl, nitrile, amine, and ketone functional groups. Aq. AgNPs and Alka-line Aq. AgNPs had velocities of - 27.7 mV and - 37.9 mV and sizes of 21-90 nm and 7.2-25.3 nm, respectively, according to zeta potential studies and TEM. The antifungal examination revealed that all species' mycelial development was significantly inhibited, accompanied by severe ultra-structural alterations. Among all treatments, Aq. AgNPs were the most effective fungicide. M. phaseolina was statistically the most resistant, whereas A. alternata was the most vulnerable. To the best of our knowledge, this is the first report on R. stricta's antifungal activity against these species.


Assuntos
Apocynaceae , Fungicidas Industriais , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
7.
Microorganisms ; 11(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677418

RESUMO

Tamarix aphylla is a Saudi herb, which possesses antimicrobial properties and potentially introduces a solution to the subsequent dilemma caused by agrochemicals and antifungal misuse. The current study aimed to assess the fungicidal properties of water and ethanolic extracts of T. aphylla leaves against Macrophomina phaseolina, Curvularia spicifera, and Fusarium spp. The chemical composition of T. aphylla was evaluated by gas chromatography/mass spectrometry technique (GC−MS) and Fourier-transform infrared spectroscopy (FTIR). The antifungal assay assessed the fungal growth inhibition using the poisoned food technique. Scanning and transmission electron microscopy (SEM and TEM) were used to evaluate the structural changes induced in the fungal species post-treatment by T. aphylla. FTIR and GC−MS analysis revealed that T. aphylla extracts were rich in aromatic and volatile compounds, such as Benzeneselenol, Gibberellic acid, and Triaziquone, which proved multiple antifungal properties. The results showed significant inhibition in the growth of all species (p < 0.05) except for F. moniliforme, where the water extract induced the highest mycelial growth inhibition at the dose of 30%. The highest inhibition was for M. phaseolina treated with the water extract (36.25 ± 1.06 mm, p < 0.001) and C. spicifera, treated with the ethanolic extract (27.25 ± 1.77 mm, p < 0.05), as compared to the untreated control and the positive control of Ridomol. SEM and TEM revealed some ultrastructural changes within the fungal growth of treated M. phaseolina, which included the thickening and mild rupture of mycelia. Those findings suggested the robust antifungal properties of T. aphylla against some filamentous fungi. The phenolic composition illustrated the potential fungicidal properties of T. aphylla. Additional studies are required to focus on more antimicrobial properties of T. aphylla against other species, particularly those that might benefit the medical field.

8.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570516

RESUMO

Cymbopogon citratus is commonly used in folk medicine for the treatment of nervous and gastrointestinal disturbances and other medical issues because of its potent antioxidant capacity. The current study evaluated the anti-candida effects of silver nanoparticles (AgNPs) synthesized from an aqueous extract of C. citratus against different Candida spp. The aqueous extract was prepared from the fresh leaves of C. citratus. The silver nanoparticles (AgNPs) were prepared and validated by UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and zeta size analysis. C. albicans, C. krusei, C. parapsilosis, C. tropicalis, C. famata, C. rhodotorula, and C. glabrata were used in the antifungal assay. Microscopical imaging were used to investigate the different morphological changes induced by treatment. FTIR spectrum confirmed the existence of various functional groups of biomolecules capping the nanoparticles. The average particle size of synthesized AgNPs was 100.6 nm by zeta-sizer and 0.012 to 0.059 mm by TEM. In the antifungal assay, AgNPs aggregates induced significant inhibition of the growth of all species (p < 0.05) compared to the control and the biofilm maturation in C. famata and C. albicans. These considerable antifungal activities might lead to the development of appropriate alternative remedy for the treatment of fungal infections.

9.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299074

RESUMO

BACKGROUND: Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and ethanolic extracts of A. sieberi. In addition, the study investigated the effect of silver nanoparticles (AgNPs) synthesized from the A. sieberi extract. METHODS: The ethanolic and aqueous extracts and AgNPs were prepared from the shoots of A. sieberi. The characteristics of AgNPs were assessed by UV-visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The antibacterial experiments were performed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The fungal species used were Candida parapsilosis, Candida krusei, Candida famata, Candida rhodotorula, and Candida albicans. The antibacterial and antifungal characteristics were evaluated by measuring the diameter of growing organisms in Petri dishes treated with different concentrations of either extracts or AgNPs compared to the untreated controls. Furthermore, TEM imaging was used to investigate any ultrastructure changes in the microbes treated with crude extracts and AgNO3. RESULTS: The ethanolic and aqueous extracts significantly decreased the growth of E. coli, S. aureus, and B. subtilis (p < 0.001), while P. aeruginosa was not affected. Unlike crude extracts, AgNPs had more substantial antibacterial effects against all species. In addition, the mycelial growth of C. famata was reduced by the treatment of both extracts. C. krusei mycelial growth was decreased by the aqueous extract, while the growth of C. parapsilosis was affected by the ethanolic extract and AgNPs (p < 0.001). None of the treatments affected the growth of C. albicans or C. rhodotorula. TEM analysis showed cellular ultrastructure changes in the treated S. aureus and C. famata compared to the control. CONCLUSION: The biosynthesized AgNPs and extracts of A. sieberi have a potential antimicrobial characteristic against pathogenic bacterial and fungal strains and nullified resistance behavior.

10.
BMC Complement Med Ther ; 22(1): 69, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292012

RESUMO

BACKGROUND: Candidiasis infection is associated with high morbidity and mortality. Fungicidal resistance of some commercially used fungicides ascended the need for a naturally effective alternative. The current study aimed to evaluate the fungicidal activity of Vitex agnus-castus extracts in vitro against some Candida species. METHODS: The bioactive compounds contained in the crude and alcoholic extracts were compared, and the antioxidant activity was tested, as well. The phytochemical analysis was carried out by Fourier Transform-Infrared Spectroscopy (FTIR) and Gas Chromatography-Mass Spectrometry (GC/MS). The scavenger activity of the tested extracts was tested, as well. The anticandidal activity was tested to detect the effect of the tested extracts on the mycelial growth of Candida albicans, Candida krusei, Candida parapsilosis, Candia tropicalis, Candida famata, Candida rhodotorula, and Candida dublinesis. The minimum inhibitory concentrations were calculated for all reported activities. The Scanning Electron Microscopy (SEM) and the Transmission Electron Microscopy (TEM) were used to detect the morphological and ultrastructure response in some selected species. RESULTS: FTIR and GC/MS revealed the existence of different bioactive chemical groups such as polyphenols, fatty acids, terpenes, terpenoids, steroids, aldehydes, alcohols, and esters, phytol which is a diterpene. DPPH results confirmed the antioxidant activity of all extracts where the methanolic extract was the strongest scavenging substrate. All extracts showed strong inhibitory effects against different species at a concentration of 200 µg/ml (P < 0.001). SEM and TEM showed morphological and ultrastructure changes in C. famata. CONCLUSION: The current study suggested a reliable antifungal activity of different extracts of Vitex agnus-castus against different Candida species and strains. However, further studies are required to confirm the safety of these extracts to be used in medical applications.


Assuntos
Candidíase , Vitex , Candida , Candidíase/tratamento farmacológico , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Vitex/química
11.
Saudi J Biol Sci ; 29(4): 2772-2781, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531187

RESUMO

The green silver nanoparticles (green AgNPs) exhibit an exceptional antimicrobial property against different microbes, including bacteria and fungi. The current study aimed to compare the antifungal activities of both the crude aqueous extract of Portulaca oleracea or different preparations of green AgNPs biosynthesized by mixing that aqueous extract with silver nitrate (AgNO3). Two preparations of the green AgNPs were synthesized either by mixing the aqueous extract of P. oleracea with silver nitrate (AgNO3) (normal AgNPs) or either irradiation of the AgNPs, previously prepared, under 60Co γ-ray using chitosan (gamma-irradiated AgNPs). Characterization of different AgNPs were tested by Zeta potential analyzer, Ultraviolet (UV) Visible Spectroscopy, and Fourier-Transform Infrared (FTIR) spectrometry. Three different plant pathogenic fungi were tested, Curvularia spicifera, Macrophomina phaseolina, and Bipolaris sp. The antifungal activities were evaluated by Transmission Electron Microscope (TEM) for either the crude aqueous extract of P. oleracea at three doses (25%, 50%, and 100%) or the newly biosynthesized AgNPs, normal or gamma-irradiated. With a few exceptions, the comparative analysis revealed that the irradiated green AgNPs at all three concentrations showed a relatively stronger antifungal effect than the normal AgNPs against all the three selected fungal strains. UV-visible spectroscopy of both preparations showed surface plasmon resonance at 421 nm. TEM results showed that both AgNPs were aggregated and characterized by a unique spherical shape, however, the gamma-irradiated AgNPs were smaller than the non-irradiated AgNPs (0.007-0.026 µM vs. 0.009-0.086 µM). TEM photographs of the fungal strains treated with the two AgNPs preparations showed flaccid structures, condensed hyphae, and shrunken surface compared with control cells. The data suggested that the biosynthesized P. oleracea AgNPs have antifungal properties against C. spicifera, M. phaseolina, and Bipolaris sp. These AgNPs may be considered a fungicide to protect different plants against phytopathogenic fungi.

12.
Saudi J Biol Sci ; 28(4): 2229-2235, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33935565

RESUMO

Cheeseweed mallow (Malva parviflora L.) was used to biosynthesize silver nanoparticles. The biosynthesized silver nanoparticles were classified by UV-vis Spectroscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). The shape and size distribution were visualized by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Zeta potential analysis. The chemical composition of M. parviflora leaf extract was identified by Gas Chromatography and Mass Spectroscopy (GC/MS). Finally, in vitro antifungal assay was done to assess the potential of biosynthesized silver nanoparticles and crude leaf extract of M. parviflora for inhibiting the mycelial growth of phytopathogenic fungi. The UV-vis analysis manifests the formation of silver nanoparticles. FTIR analysis established that chemicals of the leaf extract stabilized the biosynthesized silver nanoparticles by binding with the free silver ions. The TEM, FE-SEM and zeta potential analyzer confirmed that the biosynthesized silver nanoparticles were mostly spherical with an average diameter of 50.6 nm. The biosynthesized silver nanoparticles and leaf extract of M. parviflora effectively mitigate the mycelial growth of Helminthosporium rostratum, Fusarium solani, Fusarium oxysporum, and Alternaria alternata. The maximum reduction in mycelial growth by biosynthesized nanoparticles was observed against H. rostratum (88.6%). Whereas, the leaf extract of M. parviflora was most effective against F. solani (65.3%). Thus, the biosynthesis of nanoparticle assisted by M. parviflora is a feasible and eco-friendly method for the synthesis of silver nanoparticles. Further the silver nanoparticles and leaf extract of M. parviflora could be explored for the development of the fungicide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA