Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 866-873, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36991187

RESUMO

The urban peoples of the Swahili coast traded across eastern Africa and the Indian Ocean and were among the first practitioners of Islam among sub-Saharan people1,2. The extent to which these early interactions between Africans and non-Africans were accompanied by genetic exchange remains unknown. Here we report ancient DNA data for 80 individuals from 6 medieval and early modern (AD 1250-1800) coastal towns and an inland town after AD 1650. More than half of the DNA of many of the individuals from coastal towns originates from primarily female ancestors from Africa, with a large proportion-and occasionally more than half-of the DNA coming from Asian ancestors. The Asian ancestry includes components associated with Persia and India, with 80-90% of the Asian DNA originating from Persian men. Peoples of African and Asian origins began to mix by about AD 1000, coinciding with the large-scale adoption of Islam. Before about AD 1500, the Southwest Asian ancestry was mainly Persian-related, consistent with the narrative of the Kilwa Chronicle, the oldest history told by people of the Swahili coast3. After this time, the sources of DNA became increasingly Arabian, consistent with evidence of growing interactions with southern Arabia4. Subsequent interactions with Asian and African people further changed the ancestry of present-day people of the Swahili coast in relation to the medieval individuals whose DNA we sequenced.


Assuntos
População Africana , Asiático , Genética Populacional , Feminino , Humanos , Masculino , População Africana/genética , Asiático/genética , História Medieval , Oceano Índico , Tanzânia , Quênia , Moçambique , Comores , História do Século XV , História do Século XVI , História do Século XVII , Índia/etnologia , Pérsia/etnologia , Arábia/etnologia , DNA Antigo/análise
2.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856043

RESUMO

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Assuntos
Moléculas de Adesão Celular Neuronais , Dendritos , Córtex Entorrinal , Proteínas da Matriz Extracelular , Camundongos Knockout , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Córtex Entorrinal/metabolismo , Dendritos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Interneurônios/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio
3.
Traffic ; 25(1): e12928, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272447

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder affecting 1 in 5000-8000 individuals. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is the most common HHT and manifests as diverse vascular malformations ranging from mild symptoms such as epistaxis and mucosal and cutaneous telangiectases to severe arteriovenous malformations (AVMs) in the lungs, brain or liver. HHT1 is caused by heterozygous mutations in the ENG gene, which encodes endoglin, the TGFß homodimeric co-receptor. It was previously shown that some endoglin HHT1-causing variants failed to traffic to the plasma membrane due to their retention in the endoplasmic reticulum (ER) and consequent degradation by ER-associated degradation (ERAD). Endoglin is a homodimer formed in the ER, and we therefore hypothesized that mixed heterodimers might form between ER-retained variants and WT protein, thus hampering its maturation and trafficking to the plasma membrane causing dominant negative effects. Indeed, HA-tagged ER-retained mutants formed heterodimers with Myc-tagged WT endoglin. Moreover, variants L32R, V105D, P165L, I271N and C363Y adversely affected the trafficking of WT endoglin by reducing its maturation and plasma membrane localization. These results strongly suggest dominant negative effects exerted by these ER-retained variants aggravating endoglin loss of function in patients expressing them in the heterozygous state with the WT allele. Moreover, this study may help explain some of the variability observed among HHT1 patients due to the additional loss of function exerted by the dominant negative effects in addition to that due to haploinsufficiency. These findings might also have implications for some of the many conditions impacted by ERAD.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Alelos , Endoglina/genética , Retículo Endoplasmático/metabolismo , Mutação , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/metabolismo
4.
Traffic ; 24(8): 312-333, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188482

RESUMO

Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas , Animais , Humanos , Proteólise , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Fenótipo , Mamíferos/genética , Mamíferos/metabolismo
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38149678

RESUMO

Studies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects. A significant challenge is to determine the most suitable data source for each tool since different tools can yield different prediction results with different data inputs. To this end, this work reviews genetic variant databases and tools used specifically for the prediction of BC pathogenicity. We provide a description of existing genetic variants databases and, where appropriate, the diseases for which they have been established. Through example, we illustrate how they can be used for prediction of BC pathogenicity and discuss their associated advantages and disadvantages. We conclude that the tools that are specialized by training on multiple diverse datasets from different databases for the same disease have enhanced accuracy and specificity and are thereby more helpful to the clinicians in predicting and diagnosing BC as early as possible.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Virulência , Bases de Dados Factuais , Fatores de Risco , Aprendizado de Máquina
6.
Hum Genomics ; 18(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173046

RESUMO

BACKGROUND: Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS: Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS: Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS: Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Citocromo P-450 CYP2C19/genética , Ticlopidina/uso terapêutico , Ticlopidina/farmacologia , Emirados Árabes Unidos , Hidrocarboneto de Aril Hidroxilases/genética , Genótipo , Arildialquilfosfatase/genética
7.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20637498

RESUMO

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Anormalidades Múltiplas/metabolismo , Dolicóis/metabolismo , Deficiência Intelectual/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Butadienos/metabolismo , Consanguinidade , Embrião de Mamíferos/metabolismo , Estudo de Associação Genômica Ampla , Glicosilação , Hemiterpenos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
8.
Hum Genomics ; 17(1): 63, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454085

RESUMO

INTRODUCTION: The adoption and implementation of genomic medicine and pharmacogenomics (PGx) in healthcare systems have been very slow and limited worldwide. Major barriers to knowledge translation into clinical practice lie in the level of literacy of the public of genetics and genomics. The aim of this study was to assess the knowledge, attitudes, and perceptions of the United Arab Emirates (UAE) multi-ethnic communities toward genomic medicine and genetic testing. METHOD: A cross-sectional study using validated questionnaires was distributed to the participants. Descriptive statistics were performed, and multivariable logistic regression models were used to identify factors associated with knowledge of genomics. RESULTS: 757 individuals completed the survey. Only 7% of the participants had a good knowledge level in genetics and genomics (95% CI 5.3-9.0%). However, 76.9% of the participants were willing to take a genetic test if their relatives had a genetic disease. In addition, the majority indicated that they would disclose their genetic test results to their spouses (61.5%) and siblings (53.4%). CONCLUSIONS: This study sets the stage for the stakeholders to plan health promotion and educational campaigns to improve the genomic literacy of the community of the UAE as part of their efforts for implementing precision and personalized medicine in the country.


Assuntos
Medicina Genômica , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Emirados Árabes Unidos/epidemiologia , Estudos Transversais , Inquéritos e Questionários
9.
J Biomed Sci ; 31(1): 64, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937821

RESUMO

The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.


Assuntos
Retículo Endoplasmático , Humanos , Retículo Endoplasmático/metabolismo , Genes Dominantes , Degradação Associada com o Retículo Endoplasmático , Dobramento de Proteína , Mutação
10.
Hum Genomics ; 16(1): 35, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056420

RESUMO

BACKGROUND: Human angiotensin-converting enzyme 2 (ACE2), a type I transmembrane receptor physiologically acting as a carboxypeptidase enzyme within the renin-angiotensin system (RAS), is a critical mediator of infection by several severe acute respiratory syndrome (SARS) corona viruses. For instance, it has been demonstrated that ACE2 is the primary receptor for the SARS-CoV-2 entry to many human cells through binding to the viral spike S protein. Consequently, genetic variability in ACE2 gene has been suggested to contribute to the variable clinical manifestations in COVID-19. Many of those genetic variations result in missense variants within the amino acid sequence of ACE2. The potential effects of those variations on binding to the spike protein have been speculated and, in some cases, demonstrated experimentally. However, their effects on ACE2 protein folding, trafficking and subcellular targeting have not been established. RESULTS: In this study we aimed to examine the potential effects of 28 missense variants (V801G, D785N, R768W, I753T, L731F, L731I, I727V, N720D, R710H, R708W, S692P, E668K, V658I, N638S, A627V, F592L, G575V, A501T, I468V, M383I, G173S, N159S, N149S, D38E, N33D, K26R, I21T, and S19P) distributed across the ACE2 receptor domains on its subcellular trafficking and targeting through combinatorial approach involving in silico analysis and experimental subcellular localization analysis. Our data show that none of the studied missense variants (including 3 variants predicted to be deleterious R768W, G575V, and G173S) has a significant effect on ACE2 intracellular trafficking and subcellular targeting to the plasma membrane. CONCLUSION: Although the selected missense variants display no significant change in ACE2 trafficking and subcellular localization, this does not rule out their effect on viral susceptibility and severity. Further studies are required to investigate the effect of ACE2 variants on its expression, binding, and internalization which might explain the variable clinical manifestations associated with the infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , Humanos , Peptidil Dipeptidase A/genética , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
11.
Hum Genomics ; 16(1): 42, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36154845

RESUMO

BACKGROUND: Pharmacogenomic (PGx) testing has proved its utility and cost-effectiveness for some commonly prescribed cardiovascular disease (CVD) medications. In addition, PGx-guided dosing guidelines are now available for multiple CVD drugs, including clopidogrel, warfarin, and statins. The United Arab Emirates (UAE) population is diverse and multiethnic, with over 150 nationalities residing in the country. PGx-testing is not part of the standard of care in most global healthcare settings, including the UAE healthcare system. The first pharmacogenomic implementation clinical study in CVD has been approved recently, but multiple considerations needed evaluation before commencing. The current report appraises the PGx-clinical implementation procedure and the potential benefits of pursuing PGx-implementation initiatives in the UAE with global implications. METHODS: Patients prescribed one or more of the following drugs: clopidogrel, atorvastatin, rosuvastatin, and warfarin, were recruited. Genotyping selected genetic variants at genes interacting with the study drugs was performed by real-time PCR. RESULTS: For the current pilot study, 160 patients were recruited. The genotypes and inferred haplotypes, diplotypes, and predicted phenotypes revealed that 11.9% of the participants were poor CYP2C19 metabolizers, 35% intermediate metabolizers, 28.1% normal metabolizers, and 25% rapid or ultrarapid metabolizers. Notably, 46.9% of our cohort should receive a recommendation to avoid using clopidogrel or consider an alternative medication. Regarding warfarin, only 20% of the participants exhibited reference alleles at VKORC1-1639G > A, CYP2C9*2, and CYP2C9*3, leaving 80% with alternative genotypes at any of the two genes that can be integrated into the warfarin dosing algorithms and can be used whenever the patient receives a warfarin prescription. For statins, 31.5% of patients carried at least one allele at the genotyped SLCO1B1 variant (rs4149056), increasing their risk of developing myopathy. 96% of our cohort received at least one PGx-generated clinical recommendation for the studied drugs. CONCLUSION: The current pilot analysis verified the feasibility of PGx-testing and the unforeseen high frequencies of patients currently treated with suboptimal drug regimens, which may potentially benefit from PGx testing.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Atorvastatina , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Clopidogrel , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transportador 1 de Ânion Orgânico Específico do Fígado , Farmacogenética , Projetos Piloto , Rosuvastatina Cálcica , Emirados Árabes Unidos/epidemiologia , Vitamina K Epóxido Redutases/genética , Varfarina/uso terapêutico
12.
Lipids Health Dis ; 22(1): 69, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248472

RESUMO

BACKGROUND AND AIMS: The accumulation of misfolded proteins, encoded by genetic variants of functional genes leads to Endoplasmic Reticulum (ER) stress, which is a critical consequence in human disorders such as familial hypercholesterolemia, cardiovascular and hepatic diseases. In addition to the identification of ER stress as a contributing factor to pathogenicity, extensive studies on the role of oxidized Low-Density Lipoprotein (oxLDL) and its ill effects in expediting cardiovascular diseases and other metabolic comorbidities are well documented. However, the current understanding of its role in hepatic insults needs to be revised. This study elucidates the molecular mechanisms underlying the progression of oxLDL and ER stress-induced cytotoxicity in HepG2. METHODS: HepG2 cells stably expressing wild-type Low-Density lipoprotein receptor (WT-LDLR) and missense variants of LDLR that are pathogenically associated with familial hypercholesterolemia were used as the in vitro models. The relative mRNA expression and protein profiles of ER stress sensors, inflammatory and apoptotic markers, together with cytotoxic assays and measurement of mitochondrial membrane potential, were carried out in HepG2 cells treated with 100 µg per ml oxLDL for 24 to 48 h. 1-way or 2-way ANOVA was used for statistical analyses of datasets. RESULTS: ER stress responses are elicited along all three arms of the unfolded protein response (UPR), with adverse cytotoxic and inflammatory responses in oxLDL-treated conditions. Interestingly, oxLDL-treated ER-stressed HepG2 cells manifested intriguingly low expression of BiP- the master regulator of ER stress, as observed earlier by various researchers in liver biopsies of Non-Alcoholic Steatohepatitis (NASH) patients. This study shows that overexpression of BiP rescues hepatic cells from cytotoxic and inflammatory mechanisms instigated by ER stress in combination with oxLDL, along the ER and mitochondrial membrane and restores cellular homeostasis. CONCLUSION: The data provide interesting leads that identify patients with familial hypercholesterolemia conditions and potentially other Endoplasmic Reticulum Associated Degradation (ERAD) diseases as highly susceptible to developing hepatic insults with molecular signatures like those manifested in Non-Alcoholic Fatty Liver Disease (NAFLD) and NASH. LIMITATIONS AND FUTURE PERSPECTIVES: Although the use of HepG2 cells as the model is a major caveat of the study, the findings of this research may be used as the pilot study to expand further investigations in primary hepatocytes or iPSC- derived cellular models.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hiperlipoproteinemia Tipo II , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células Hep G2 , Projetos Piloto , Lipoproteínas LDL/farmacologia , Estresse do Retículo Endoplasmático/genética , Hiperlipoproteinemia Tipo II/genética
13.
Chem Biodivers ; 20(11): e202301176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861105

RESUMO

With the potential for coronaviruses to re-emerge and trigger future pandemics, the urgent development of antiviral inhibitors against SARS-CoV-2 is essential. The Mpro enzyme is crucial for disease progression and the virus's life cycle. It possesses allosteric sites that can hinder its catalytic activity, with some of these sites located at or near the dimerization interface. Among them, sites #2 and #5 possess druggable pockets and are predicted to bind drug-like molecules. Consequently, a commercially available ligand library containing ~7 million ligands was used to target site #2 via structure-based virtual screening. After extensive filtering, docking, and post-docking analyses, 53 compounds were chosen for biological testing. An oxindole derivative was identified as a Mpro non-competitive reversible inhibitor with a Ki of 115 µM and an IC50 of 101.9 µM. Throughout the 200 ns-long MD trajectories, our top hit has shown a very stable binding mode, forming several interactions with residues in sites #2 and #5. Moreover, derivatives of our top hit were acquired for biological testing to gain deeper insights into their structure-activity relationship. To sum up, drug-like allosteric inhibitors seem promising and can provide us with an additional weapon in our war against the recent pandemic, and possibly other coronaviruses-caused diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/química , Oxindóis/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
14.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298070

RESUMO

Cardiovascular disease (CVD) during pregnancy varies significantly worldwide, influenced by factors such as access to healthcare, delayed diagnosis, causes, and risk factors. Our study sought to explore the spectrum of CVD present in pregnant women in the United Arab Emirates to better understand this population's unique needs and challenges. Central to our study is an emphasis on the importance of implementing a multidisciplinary approach that involves the collaboration of obstetricians, cardiologists, geneticists, and other healthcare professionals to ensure that patients receive comprehensive and coordinated care. This approach can also help identify high-risk patients and implement preventive measures to reduce the occurrence of adverse maternal outcomes. Furthermore, increasing awareness among women about the risk of CVD during pregnancy and obtaining detailed family histories can help in the early identification and management of these conditions. Genetic testing and family screening can also aid in identifying inherited CVD that can be passed down through families. To illustrate the significance of such an approach, we provide a comprehensive analysis of five women's cases from our retrospective study of 800 women. The findings from our study emphasize the importance of addressing maternal cardiac health in pregnancy and the need for targeted interventions and improvements in the existing healthcare system to reduce adverse maternal outcomes.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Obstetrícia , Humanos , Gravidez , Feminino , Estudos Retrospectivos , Medição de Risco , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética
15.
Psychiatr Q ; 94(3): 435-447, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490261

RESUMO

Major depression is a frequent condition which variably responds to treatment. In view of its high prevalence, the presence of treatment resistance in major depression significantly impacts on quality of life. Tailoring pharmacological treatment based on genetic polymorphisms is a current trend to personalizing pharmacological treatment in patients with major depressive disorders. Current guidelines for the use of genetic tests in major depression issued by the Clinical Pharmacogenomics Implementation Consortium (CPIC) are based on CYP2D6 and CYP2C19 polymorphisms which constitute the strongest evidence for pharmacogenomic guided treatment. There is evidence of increased clinical response to pharmacological treatment in major depression although largely in non-treatment resistant patients from Western countries. In this study, well characterised participants (N = 15) with complex, largely treatment resistant unipolar major depression were investigated, and clinical improvement was measured at baseline and at week-8 after the pharmacogenomics-guided treatment with the Montgomery Åsberg Depression Rating Scale (MÅDRS). Results suggested a statistically significant improvement (p = 0.01) of 16% at endpoint in the whole group and a larger effect in case of changes in medication regime (28%, p = 0.004). This small but appreciable effect can be understood in the context of the level of treatment resistance in the group. To our knowledge, this is the first study from the Middle East demonstrating the feasibility of this approach in the treatment of complex major depressive disorders.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/epidemiologia , Antidepressivos/uso terapêutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/uso terapêutico , Depressão , Estudos Longitudinais , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/uso terapêutico , Qualidade de Vida
16.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
17.
Hum Genet ; 141(6): 1137-1157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34599365

RESUMO

Over the last few years, the field of pharmacogenomics has gained considerable momentum. The advances of new genomics and bioinformatics technologies propelled pharmacogenomics towards its implementation in the clinical setting. Since 2007, and especially the last-5 years, many studies have focused on the clinical implementation of pharmacogenomics while identifying obstacles and proposed strategies and approaches for overcoming them in the real world of primary care as well as outpatients and inpatients clinics. Here, we outline the recent pharmacogenomics clinical implementation projects and provide details of the study designs, including the most predominant and innovative, as well as clinical studies worldwide that focus on outpatients and inpatient clinics, and primary care. According to these studies, pharmacogenomics holds promise for improving patients' health in terms of efficacy and toxicity, as well as in their overall quality of life, while simultaneously can contribute to the minimization of healthcare expenditure.


Assuntos
Farmacogenética , Qualidade de Vida , Biologia Computacional , Terapia Genética , Genômica , Humanos
18.
Clin Genet ; 101(4): 403-410, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34988996

RESUMO

Here, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.Pro353Glnfs*102) in MMP15 gene that co-segregates with the phenotype in the family in a recessive mode of inheritance. Relative quantification of MMP15 mRNA showed evidence of degradation of the mutated transcript, presumably by nonsense mediated decay. Likewise, MMP15: p.Gly231Arg, a concurrently reported homozygous missense variant in another patient exhibiting a similar phenotype, was predicted to disrupt zinc ion binding to the MMP-15 enzyme catalytic domain, which is essential for substrate proteolysis, by structural modeling. Previous animal models and cellular findings suggested that MMP15 plays a crucial role in the formation of endocardial cushions. These findings confirm that MMP15 is an important gene in human development, particularly cardiac, and that its loss of function is likely to cause a severe disorder phenotype.


Assuntos
Colestase , Cardiopatias Congênitas , Icterícia , Metaloproteinase 15 da Matriz/genética , Animais , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Fenótipo
19.
Hum Genomics ; 15(1): 8, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514423

RESUMO

With the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2-based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Mutação , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/genética , Internalização do Vírus
20.
Hum Genomics ; 15(1): 62, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656176

RESUMO

BACKGROUND: Pharmacists play a unique role in integrating genomic medicine and pharmacogenomics into the clinical practice and to translate pharmacogenomics from bench to bedside. However, the literature suggests that the knowledge gap in pharmacogenomics is a major challenge; therefore, developing pharmacists' skills and literacy to achieve this anticipated role is highly important. We aim to conceptualize a personalized literacy framework for the adoption of genomic medicine and pharmacogenomics by pharmacists in the United Arab Emirates with possible regional and global relevance. RESULTS: A qualitative approach using focus groups was used to design and to guide the development of a pharmacogenomics literacy framework. The Health Literacy Skills framework was used as a guide to conceptualize the pharmacogenomics literacy for pharmacists. The framework included six major components with specific suggested factors to improve pharmacists' pharmacogenomics literacy. Major components include individual inputs, demand, skills, knowledge, attitude and sociocultural factors. CONCLUSION: This framework confirms a holistic bottom-up approach toward the implementation of pharmacogenomics. Personalized medicine entails personalized efforts and frameworks. Similar framework can be created for other healthcare providers, patients and stakeholders.


Assuntos
Farmacêuticos , Farmacogenética , Genômica , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Alfabetização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA