Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; : e5142, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494895

RESUMO

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.

2.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
3.
J Pharmacol Exp Ther ; 386(2): 259-265, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316328

RESUMO

Post-traumatic epilepsy (PTE) occurs in some patients after moderate/severe traumatic brain injury (TBI). Although there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI after either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague-Dawley rats were used as controls and for the LFPI model induced at the left parietal region using injury parameters optimized for moderate/severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified time points throughout the study. LEV concentrations in plasma and brain were measured using validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods. Noncompartmental analysis and a naive-pooled compartmental PK modeling approach were used. Brain-to-plasma ratios ranged from 0.54 to 1.4 to 1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 ml/h per kg and volume of distribution of 293 ml/kg. The single-dose pharmacokinetic data were used to guide dose selection for the longer-term studies, and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx. SIGNIFICANCE STATEMENT: The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Levetiracetam , Epilepsia Pós-Traumática/tratamento farmacológico , Percussão , Espectrometria de Massas em Tandem , Ratos Sprague-Dawley , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
4.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37539645

RESUMO

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Ratos , Masculino , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Ratos Wistar , Convulsões/tratamento farmacológico , Eletroencefalografia , Ácido gama-Aminobutírico , Modelos Animais de Doenças , Hipocampo
5.
Neurobiol Dis ; 168: 105688, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35288303

RESUMO

OBJECTIVE: Status epilepticus (SE) models in rodents are commonly used to research mesial temporal lobe epilepsy (mTLE) in translational epilepsy research. However, due to differences in susceptibility of mice strains to chemoconvulsants, developing this model in mice is challenging. Mice offer experimental advantages; in particular, the ability to use transgenic strains could provide novel insights about neurobiological mechanisms or ease of genetic modification to test potential therapeutic targets. This study aimed to characterise the neuroinflammation, epileptic seizures and behavioural comorbidities after self-sustained Electrical Status Epilepticus (SSSE) in C57BL/6J mice. METHODS: SSSE was induced in C57BL/6J mice via prolonged electrical stimulation through a bipolar electrode implanted in the ventral hippocampus. Video electroencephalography (vEEG) monitoring was then performed between 1st month (acute timepoint) and 4th month (chronic timepoint). Brain tissues were collected at two timepoints for gene expression and immunohistochemical analysis: 7-days and 16-weeks post-SE. Additionally, at the chronic timepoint, animals underwent a series of neurobehavioural tests. RESULTS: Sixty percent of animals that underwent SSSE developed spontaneous seizures within the first month, and an additional 25% developed seizures at the chronic timepoint. The number of seizures per week during the chronic period ranged from 0.2 to 15.7. Mortality rate was ~9% during or after SSSE. SSSE animals displayed significant spatial memory impairment and depression-like behaviour compared to sham animals. mRNA expression of inflammatory cytokines was upregulated at 7-days following SE, but equal to sham levels at 16-weeks. SIGNIFICANCE: This study provides evidence that SSSE in C57BL/6J mice induces epileptic seizures consistent with those seen in patients with mTLE, along with cognitive and behavioural comorbidities. This model therefore has the potential to be used experimentally to uncover mechanisms to target against epileptogenesis, or to test novel treatment approaches.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Convulsões , Estado Epiléptico/metabolismo
6.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144667

RESUMO

(1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.


Assuntos
Cobre , Flumazenil , Cobre/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ácido gama-Aminobutírico
7.
Epilepsia ; 61(2): 203-215, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943156

RESUMO

Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Microglia/patologia , Animais , Polaridade Celular , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalite/patologia , Epilepsia Pós-Traumática/terapia , Humanos
8.
Neurobiol Dis ; 127: 45-52, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30798008

RESUMO

Different types of brain injury, such as status epilepticus (SE), trauma, or stroke may initiate the process of epileptogenesis and lead to the development of temporal lobe epilepsy. Epileptogenesis is characterized by an initial latent period during which impaired network communication and synaptic circuit alterations are occurring. Ultimately, these modifications result in the development of spontaneous recurrent seizures (SRS). Current knowledge on the functional connectivity network changes during epileptogenesis and how network alterations relate to seizure is very limited. To investigate these underlying network connectivity modifications, we imaged epileptic and control rats by means of resting-state functional MRI (rsfMRI) during epileptogenesis. A cohort of animals was video-electroencephalography (video-EEG) monitored continuously over 12 weeks to determine disease severity during the course of disease, with the first SRS appearing around 2 weeks post-SE for most of the animals. Epileptic animals displayed a significant wide-spread hyposynchrony at 2 weeks post-SE, followed by a significant increase in network synchronicity from 2 to 4 weeks post-SE. Interestingly, subjects with a delayed epilepsy onset demonstrated significantly lower synchronicity compared to controls and the epileptic group at 4 weeks post-SE. Finally, network connectivity at 4 weeks post-SE was found to correlate with seizure onset (r = 0.858, p < .0001) and disease severity measured over 12 weeks (e.g. cingulate cortex: r = 0.863, p = .002), suggesting a possible network strengthening upon seizure reoccurrence. Our findings indicate that epileptogenesis is characterized by an initial hyposynchrony of brain networks and the disease-associated progression reflects disease severity.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Rede Nervosa/fisiopatologia , Estado Epiléptico/fisiopatologia , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Progressão da Doença , Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Neuroimagem , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Estado Epiléptico/diagnóstico por imagem
9.
Neurobiol Dis ; 123: 100-109, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30099094

RESUMO

In the quest for developing new therapeutic targets for post-traumatic epilepsies (PTE), identifying mechanisms relevant to development and progression of disease is critical. A growing body of literature suggests involvement of neurodegenerative mechanisms in the pathophysiology of acquired epilepsies, including following traumatic brain injury (TBI). In this review, we discuss the potential of some of these mechanisms to be targets for the development of a therapy against PTE.


Assuntos
Epilepsia Pós-Traumática/fisiopatologia , Epilepsia Pós-Traumática/terapia , Doenças Neurodegenerativas/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Progressão da Doença , Encefalite/etiologia , Encefalite/fisiopatologia , Epilepsia Pós-Traumática/complicações , Humanos , Tauopatias/etiologia , Tauopatias/fisiopatologia
10.
Neurobiol Dis ; 123: 86-99, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936231

RESUMO

Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Epilepsia Pós-Traumática/terapia , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Humanos , Transdução de Sinais
11.
Epilepsia ; 60(7): 1378-1386, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206645

RESUMO

OBJECTIVE: Recent data indicate that amygdala kindling leads to significant changes in interictal neuronal firing patterns of thalamic reticular nucleus (TRN) neurons by decreasing the spontaneous firing rate and increasing burst firing in nonepileptic control (NEC) rats. Genetic Absence Epilepsy Rats From Strasbourg (GAERS) were resistant to these kindling-induced firing changes in TRN neurons, and are also resistant to the progression of kindling. We investigated whether a homozygous, missense, single nucleotide mutation (R1584P) in the Cav 3.2 T-type Ca2+ channel gene, which has been correlated with the expression of absence seizures in GAERS, influenced kindling progression and TRN firing patterns. METHODS: Double-crossed (GAERS vs NEC; F2) rats that were homozygous for the Cav 3.2 mutation (PP) and those negative for the mutation (RR) were implanted with a stimulating electrode in the amygdala. Rats received a total of 30 kindling stimulations at their afterdischarge threshold current twice daily, and kindling progression was evaluated. Thereafter, the extracellular neuronal activity of TRN neurons was recorded in vivo under neuroleptanesthesia to investigate the influence of Cav 3.2 mutation on TRN firing patterns. RESULTS: We found that the R1584P mutation did not affect kindling progression in F2 crosses (P = 0.78). However, it influenced kindling-induced neuronal firing of TRN neurons. After 30 stimulations, RR rats exhibited a lower firing rate and a higher percentage of burst firing compared to PP rats. The decrease in firing frequency was correlated with the increase in the amount of burst firing in RR rats (R2  = 0.497). SIGNIFICANCE: Our findings suggest that mutation in Cav 3.2 T-type Ca2+ channels may play a role in the resistance to kindling-induced changes in TRN neurons to a low-frequency and high-percentage bursting pattern seen in association with the convulsive stages of amygdala kindling, but is not in itself enough to explain the resistance to kindling progression observed in GAERS.


Assuntos
Canais de Cálcio Tipo T/genética , Epilepsia Tipo Ausência/genética , Excitação Neurológica , Núcleos Talâmicos/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Eletrodos Implantados , Eletroencefalografia , Epilepsia Tipo Ausência/etiologia , Epilepsia Tipo Ausência/fisiopatologia , Excitação Neurológica/genética , Excitação Neurológica/fisiologia , Masculino , Mutação de Sentido Incorreto/genética , Reação em Cadeia da Polimerase , Ratos
12.
Epilepsia ; 59(7): 1444-1454, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29923603

RESUMO

OBJECTIVES: Neuropeptide Y (NPY) potently suppresses spike-wave discharges (SWDs) in a genetic rat model of absence epilepsy (GAERS), but the underlying neurophysiologic mechanisms are not clear. We therefore sought to determine the in vivo effects of NPY on neuronal firing in the cortico-thalamo-cortical network activity, known to play a critical role in the generation of SWDs in these rats. METHODS: NPY was administered intracerebroventricularly (ICV) or in separate experiments locally on the neurons of caudal thalamic reticular nucleus (NRT) by use of juxtacellular iontophoresis in triple-barrel electrodes in male GAERS aged 12-15 weeks, in vivo under neuroleptic anesthesia. Drug infusions and electroencephalography (EEG) monitoring were performed simultaneously with juxtacellular single neuronal recordings. Effect of NPY on electrically induced SWD induction threshold were also measured. RESULTS: NPY administration ICV led to a decrease in the total length of SWDs in EEG recordings. Both ICV administration and iontophoresis of NPY on NRT neurons led to an increase in interictal neuronal firing of NRT neurons. During ictal periods, ICV NPY administration reduced the number of thalamic action potentials per SWDs, as well as reduced waveform correlations between field potentials within the NRT and the cortical EEG. NPY administration ICV did not significantly alter the firing patterns of relay thalamic neurons interictally and cortical neurons during ictal and interictal periods. In addition, SWD induction threshold in the S2 region of the cortex was significantly increased after NPY administration. SIGNIFICANCE: Our results show alterations in cortico-thalamo-cortical local and network properties following ICV administration of NPY, suggesting mechanisms of SWD suppression in GAERS. Cellular and network alteration of NRT activity, resulting from a direct action of NPY, may be a contributor to this effect.


Assuntos
Epilepsia Tipo Ausência/fisiopatologia , Potenciais Evocados/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Rede Nervosa/fisiopatologia , Neuropeptídeo Y/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Eletrodos Implantados , Eletroencefalografia , Masculino , Neurônios/fisiologia , Ratos
13.
Epilepsia ; 59(5): 945-958, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29637555

RESUMO

OBJECTIVE: Status epilepticus (SE) is an abnormally prolonged epileptic seizure that if associated with convulsive motor symptoms is potentially life threatening for a patient. However, 20%-40% of patients with SE lack convulsive events and instead present with more subtle semiology such as altered consciousness and less motor activity. Today, there is no general consensus regarding to what extent nonconvulsive SE (NCSE) is harmful to the brain, which adds uncertainty to stringent treatment regimes. METHODS: Here, we evaluated brain pathology in an experimental rat and mouse model of complex partial NCSE originating in the temporal lobes with Western blot analysis, immunohistochemistry, and ex vivo diffusion tensor imaging (DTI). The NCSE was induced by electrical stimulation with intrahippocampal electrodes and terminated with pentobarbital anesthesia. Video-electroencephalographic recordings were performed throughout the experiment. RESULTS: DTI of mice 7 weeks post-NCSE showed no robust long-lasting changes in fractional anisotropy within the hippocampal epileptic focus. Instead, we found pathophysiological changes developing over time when measuring protein levels and cell counts in extracted brain tissue. At 6 and 24 hours post-NCSE in rats, few changes were observed within the hippocampus and cortical or subcortical structures in Western blot analyses of key components of the cellular immune response and synaptic protein expression, while neurodegeneration had started. However, 1 week post-NCSE, both excitatory and inhibitory synaptic protein levels were decreased in hippocampus, concomitant with an excessive microglial and astrocytic activation. At 4 weeks, a continuous immune response in the hippocampus was accompanied with neuronal loss. Levels of the excitatory synaptic adhesion molecule N-cadherin were decreased specifically in rats that developed unprovoked spontaneous seizures (epileptogenesis) within 1 month following NCSE, compared to rats only exhibiting acute symptomatic seizures within 1 week post-NCSE. SIGNIFICANCE: These findings provide evidence for a significant brain pathology following NCSE in an experimental rodent model.


Assuntos
Encéfalo/patologia , Estado Epiléptico/patologia , Animais , Encéfalo/fisiopatologia , Imagem de Tensor de Difusão , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/fisiopatologia
14.
Epilepsia ; 58(6): 1063-1072, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28374921

RESUMO

OBJECTIVES: Neuroinflammation plays a critical role in the pathophysiology of mesial temporal lobe epilepsy. We aimed to evaluate whether intracerebral transplantation of interleukin 13-producing mesenchymal stem cells (IL-13 MSCs) induces an M2 microglia/macrophage activation phenotype in the hippocampus with an epileptogenic insult, thereby providing a neuroprotective environment with reduced epileptogenesis. METHODS: Genetically engineered syngeneic IL-13 MSCs or vehicle was injected within the hippocampus 1 week before the intrahippocampal kainic acid-induced status epilepticus (SE) in C57BL/6J mice. Neuroinflammation was evaluated at disease onset as well as during the chronic epilepsy period (9 weeks). In addition, continuous video-electroencephalography (EEG) (vEEG) monitoring was obtained during the chronic epilepsy period (between 6 and 9 weeks after SE). RESULTS: Evaluation of vEEG recordings suggested that IL-13 MSC grafts did not affect the severity and duration of SE or the seizure burden during the chronic epilepsy period, when compared to the vehicle treated SE mice. An M2-activation phenotype was induced in microglia/macrophages that infiltrated the -13 MSC graft site, as evidenced by the arginase1 expression at the graft site at both the 2-week and 9-week time-points. However, M2-activated immune cells were rarely observed outside the graft site and, accordingly, the neuroinflammatory response or cell loss related to SE induction was not altered by IL-13 MSC grafting. Moreover, an increase in the proportion of F4/80+ cells was observed in the IL-13 MSC group compared to the controls. SIGNIFICANCE: Our data suggest that MSC-based IL-13 delivery to induce M2 glial activation does not provide any neuroprotective or disease-modifying effects in a mouse model of epilepsy. Moreover, use of cell grafting to deliver bioactive compounds for modulating neuroinflammation may have confounding effects in disease pathology of epilepsy due to the additional immune response generated by the grafted cells.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interleucina-13/farmacologia , Ativação de Macrófagos , Transplante de Células-Tronco Mesenquimais , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Sistemas de Liberação de Medicamentos , Eletrodos Implantados , Eletroencefalografia/efeitos dos fármacos , Engenharia Genética , Injeções , Interleucina-13/genética , Interleucina-13/metabolismo , Masculino , Camundongos Endogâmicos C57BL
15.
J Neuroinflammation ; 13(1): 155, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346214

RESUMO

BACKGROUND: Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina. METHODS: Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 antibody intracerebroventricularly for 6 weeks after status epilepticus. RESULTS: Biochemical analyses and immunohistochemistry revealed no increased cell death and unaltered expression of several immune-related cytokines and chemokines as well as no microglial activation, 6 h post-status epilepticus compared to non-stimulated controls. At 1 week, again, retinal cytoarchitecture appeared normal and there was no cell death or micro- or macroglial reaction, apart from a small decrease in interleukin-10. However, at 7 weeks, even if the cytoarchitecture remained normal and no ongoing cell death was detected, the numbers of microglia were increased ipsi- and contralateral to the epileptic focus. The microglia remained within the synaptic layers but often in clusters and with more processes extending into the outer nuclear layer. Morphological analyses revealed a decrease in surveying and an increase in activated microglia. In addition, increased levels of the chemokine KC/GRO and cytokine interleukin-1ß were found. Furthermore, macroglial activation was noted in the inner retina. No alterations in numbers of phagocytic cells, infiltrating macrophages, or vascular pericytes were observed. Post-synaptic density-95 cluster intensity was reduced in the outer nuclear layer, reflecting seizure-induced synaptic changes without disrupted cytoarchitecture in areas with increased microglial activation. The retinal gliosis was decreased by a CX3CR1 immune modulation known to reduce gliosis within epileptic foci, suggesting a common immunological reaction. CONCLUSIONS: Our results are the first evidence that epileptic seizures induce an immune response in the retina. It has a potential to become a novel non-invasive tool for detecting brain inflammation through the eyes.


Assuntos
Citocinas/metabolismo , Olho/imunologia , Olho/patologia , Estado Epiléptico/imunologia , Estado Epiléptico/patologia , Animais , Anticorpos/farmacologia , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Olho/metabolismo , Fluoresceínas/farmacocinética , Lateralidade Funcional , Hipocampo/efeitos da radiação , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Quimiocinas/imunologia , Estado Epiléptico/etiologia , Estado Epiléptico/fisiopatologia , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia
16.
Neurobiol Dis ; 74: 194-203, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461978

RESUMO

Temporal lobe seizures lead to an acute inflammatory response in the brain primarily characterized by activation of parenchymal microglial cells. Simultaneously, degeneration of pyramidal cells and interneurons is evident together with a seizure-induced increase in the production of new neurons within the dentate gyrus of the hippocampus. We have previously shown a negative correlation between the acute seizure-induced inflammation and the survival of newborn hippocampal neurons. Here, we aimed to evaluate the role of the fractalkine-CX3CR1 pathway for these acute events. Fractalkine is a chemokine expressed by both neurons and glia, while its receptor, CX3CR1 is primarily expressed on microglia. Electrically-induced partial status epilepticus (SE) was induced in adult rats through stereotaxically implanted electrodes in the hippocampus. Recombinant rat fractalkine or CX3CR1 antibody was infused intraventricularly during one week post-SE. A significant increase in the expression of CX3CR1, but not fractalkine, was observed in the dentate gyrus at one week. CX3CR1 antibody treatment resulted in a reduction in microglial activation, neurodegeneration, as well as neuroblast production. In contrast, fractalkine treatment had only minor effects. This study provides evidence for a role of the fractalkine-CX3CR1 signaling pathway in seizure-induced microglial activation and suggests that neuroblast production following seizures may partly occur as a result of microglial activation.


Assuntos
Hipocampo/fisiopatologia , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Receptores de Quimiocinas/metabolismo , Convulsões/fisiopatologia , Animais , Anticorpos/administração & dosagem , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Neuroestimuladores Implantáveis , Masculino , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Ratos Sprague-Dawley , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/genética , Proteínas Recombinantes/administração & dosagem , Convulsões/tratamento farmacológico , Convulsões/patologia , Transdução de Sinais/efeitos dos fármacos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Fatores de Tempo
17.
Epilepsia ; 55(5): 654-665, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24673730

RESUMO

OBJECTIVE: The co-occurrence of absence and mesial temporal lobe epilepsy is rare in both humans and animal models. Consistent with this, rat models of absence epilepsy, including genetic absence epilepsy rats from Strasbourg (GAERS), are resistant to experimental temporal lobe epileptogenesis, in particular by amygdala kindling. Structures within the cortical-thalamocortical system are critically involved in the generation and maintenance of the electrographic spike-and-wave discharges (SWDs) that characterize absence seizures. Using in vivo electrophysiologic recordings, this study investigated the role of thalamocortical circuitry in the generalization of amygdala-kindling induced seizures in the GAERS and the nonepileptic control (NEC) strain of Wistar rats. METHODS: GAERS and NEC rats were implanted with a stimulating electrode in amygdala and stimulated at afterdischarge threshold twice daily to a maximum number of 30 stimulations. Thereafter extracellular single neuron recordings were performed in vivo under neuroleptanesthesia in the thalamocortical network. RESULTS: In NEC rats, amygdala kindling induced convulsive class V seizures and altered characteristics of neuronal activity in the thalamic reticular nucleus (TRN), in particular decreased firing rates and increased burst firing patterns. Less marked changes were seen in other regions examined: the ventroposteromedial nucleus of thalamus (VPM), the CA3 region of the hippocampus, and the deep layers (V/VI) of the cortex. GAERS did not progress beyond class II seizures, with a matched number of kindling stimulations, and the thalamic neuronal firing alterations observed in NEC rats were not seen. SIGNIFICANCE: These data suggest that the TRN plays an important role in kindling resistance in GAERS and is central to the control of secondary generalization of limbic seizures.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Excitação Neurológica/fisiologia , Núcleos Laterais do Tálamo/fisiopatologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Tonsila do Cerebelo/patologia , Animais , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Córtex Cerebral/patologia , Eletroencefalografia , Epilepsia Tipo Ausência/patologia , Epilepsia do Lobo Temporal/patologia , Núcleos Laterais do Tálamo/patologia , Masculino , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Ratos , Ratos Endogâmicos , Ratos Wistar
18.
J Neurotrauma ; 41(1-2): 222-243, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950806

RESUMO

Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.


Assuntos
Lesões Encefálicas Traumáticas , Selênio , Ratos , Masculino , Animais , Ácido Selênico/farmacologia , Fosforilação , Proteínas tau/metabolismo , Córtex Cerebral/metabolismo
19.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056191

RESUMO

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como Assunto
20.
J Alzheimers Dis ; 94(s1): S253-S265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092226

RESUMO

BACKGROUND: Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis. OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy. METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review. RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy. CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.


Assuntos
Doença de Alzheimer , Epilepsia , Humanos , Doença de Alzheimer/patologia , Doenças Neuroinflamatórias , Encéfalo/patologia , Epilepsia/complicações , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA