Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39075813

RESUMO

BACKGROUND: Catheter Ablation (CA) is an effective treatment for atrial fibrillation (AF). However, frail elderly patients have been understudied due to their exclusion from landmark trials. OBJECTIVES: Our study aims to evaluate outcomes in this population. METHODS: The national readmission database (2016-2020) was queried, and frailty categories were defined based on hospital risk frailty scores ≦5 as low while >5 as intermediate/high frailty (IHF). We used multivariate regression and propensity-matched analysis to compare outcomes in patients undergoing CA for atrial fibrillation based on frailty index. RESULTS: Among 55 936 CAs for AF, 33,248 patients had low frailty, while 22 688 had intermediate/high frailty (IHF). After propensity matching (N 12 448), IHF patients were found to have higher adverse events, including mortality (3% vs. 0.3%, p < .001), stroke (1.9% vs. 0.2%, p < .001), acute heart failure (53.8% vs. 42.2%, p < .001), AKI (42.5% vs. 6.8%, p < .001), pericardial complications (2.8 vs. 1.6%, p < .001), respiratory complications (27.8 vs. 7.2%, p < .001), major adverse cardiovascular events (21.2 vs. 9.4%, p < .001) and net adverse events (76.7 vs. 55%, p < .001). IHF patients had higher readmissions at 30 (15.5 vs. 12.6%, p < .001), 90 (31.9 vs. 25.1%, p < .001), and 180-day (41 vs. 34.7%, p < .001) intervals. A higher median length of stay (LOS) (7 vs. 3 days, p < .001) and cost ($44 287 vs. $27 517, p < .001) at index admission and subsequent readmissions were also observed (p < .001). CONCLUSION: Intermediate/high frailty patients undergoing catheter ablation had worse clinical outcomes, higher healthcare burden, and readmission rates. LOS has decreased in both groups from 2016 to 2020; however, total cost has increased.

2.
Vasc Med ; : 1358863X241265335, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164077

RESUMO

Background: Antiplatelet therapy plays an important role in reducing the risk of stroke recurrence in patients with mild ischemic stroke or high-risk transient ischemic attack (TIA). However, data regarding the effectiveness and safety of using aspirin plus clopidogrel in dual antiplatelet therapy (DAPT) compared to aspirin alone in mild ischemic stroke is limited. Methods: PubMed/MEDLINE, Embase, Cochrane Library, and ClinicalTrials.gov were searched for randomized controlled trials (RCTs) that compared DAPT to aspirin alone started within 72 hours in mild ischemic stroke or high-risk TIA. We used a random effects model to pool risk ratios (RRs) along with 95% CIs for clinical outcomes. Results: Four RCTs with 16,547 patients were included in this study. DAPT significantly reduced the risk of recurrent stroke by 26% (RR: 0.74; 95% CI: 0.67-0.83; p < 0.00001), ischemic stroke by 28% (RR: 0.72; 95% CI: 0.65-0.80; p < 0.00001), and major adverse cardiovascular events (MACE) by 24% (RR: 0.76; 95% CI: 0.68-0.84; p < 0.00001) compared to aspirin monotherapy. However, DAPT was associated with a significantly increased risk of moderate or severe bleeding (RR: 1.88; 95% CI: 1.10-3.23; p = 0.02) compared to aspirin alone. No significant differences were observed for hemorrhagic stroke (RR: 1.77; 95% CI: 0.96-3.29; p = 0.07), all-cause mortality (RR: 1.25; 95% CI: 0.87-1.80; p = 0.23), cardiovascular mortality (RR: 1.38; 95% CI: 0.81-2.33; p = 0.23), and myocardial infarction (RR: 1.63; 95% CI: 0.77-3.46; p = 0.20). Conclusion: DAPT involving aspirin plus clopidogrel reduces stroke recurrence and MACE but can lead to an increased risk of moderate or severe bleeding compared to aspirin monotherapy. (PROSPERO ID: CRD42024499310).

3.
Environ Res ; 260: 119481, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917930

RESUMO

An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.

4.
Ecotoxicology ; 33(3): 296-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498245

RESUMO

This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.


Assuntos
Ciclídeos , Animais , Polietileno/toxicidade , Microplásticos/metabolismo , Plásticos , Exposição Dietética/efeitos adversos , Dieta , Nutrientes , Ração Animal/análise , Suplementos Nutricionais
5.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1028-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467582

RESUMO

Biochar, an organic carbonaceous matter, is a unique feed additive that is now being used in aquaculture industry to formulate a cost-effective and eco-friendly diet. This experiment (in door) was conducted over course of 90 days to determine the most effective form of biochar, produced from various sources, for supplementation in Moringa oleifera seed meal-based diet. These sources were: farmyard manure biochar, parthenium biochar (PB), vegetable waste biochar, poultry waste biochar (PWB) and corncob waste biochar, added at 2 g/kg concentration to determine the effect of supplementation on the growth indices, nutrient absorption, carcass composition, haematology and mineral status of Labeo rohita (rohu) fingerlings. The research design consisted of six test diets with three replications (6 × 3) of each. Total of 270 fingerlings (6.30 ± 0.020 g) were fed at 5% body weight and 15 of them were kept in separate steel tanks. The results indicated that PWB was most effective in improving weight gain (285.58 ± 4.54%) and feed conversion ratio (1.060 ± 0.040) compared to control diet and other test diets. The same type of biochar (PWB) produced the best results for nutrient digestibility, that is, crude protein, crude fat and gross energy and carcass composition. In terms of haematology and mineral status, PWB showed the best results. In conclusion, it was found that PWB significantly enhanced (p < 0.05) L. rohita fingerling's growth, carcass composition, nutrient digestibility, haematological parameters (red blood cells, white blood cells, platelets and haemoglobin) and mineral composition (Ca, Na, P, Mg, Fe, Mn, Zn, K and Cu) whereas PB negatively affected all parameters. It is anticipated that the potential use of biochar will increase in aquaculture industry, as research on its incorporation in fish feeds is still limited.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Composição Corporal , Carvão Vegetal , Cyprinidae , Dieta , Minerais , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Carvão Vegetal/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Composição Corporal/efeitos dos fármacos , Minerais/administração & dosagem , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/fisiologia
6.
Sci Total Environ ; 921: 171005, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38378068

RESUMO

Cadmium (Cd), a toxic heavy metal, poses significant threats to both crop production and human health worldwide. Manganese (Mn), an essential micronutrient, plays a crucial role in plant growth and development. NRAMPs (Natural Resistance-Associated Macrophage Proteins) function as common transporters for both Cd and Mn. Deep understanding of the regulatory mechanisms governing NRAMP-mediated Cd and Mn transport is imperative for developing the crop varieties with high tolerance and low accumulation of Cd. This review reported the advance in studies on the fundamental properties and classification of NRAMPs in plants, and structural characteristics, expression patterns, and diverse functions of NRAMP genes across different plant species. We highlighted the pivotal role of NRAMPs in Cd/Mn uptake and transport in plants as a common transporter. Finally, we also comprehensively discussed over the strategies for reducing Cd uptake and accumulation in plants through using antagonism of Mn over Cd and altering the expression of NRAMP genes.


Assuntos
Manganês , Oligoelementos , Humanos , Manganês/toxicidade , Manganês/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
7.
Sci Rep ; 14(1): 2092, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267592

RESUMO

In this article, an attribute control chart is proposed when the lifetime of a product follows a Weibull distribution in two-stage sampling, which is based on the number of failures from a truncated life test. The coefficients of the proposed double sampling attribute control chart and the test duration are determined so that the average run length when the process is in control is close to the target value. An overview is reported on how double sampling np control charts work. Tables reporting the out-of-control average run lengths are given for various shift parameters. A case study is given to illustrate the proposed control chart for industrial use. A comparison of two-stage and single-stage sampling of failure of products is discussed.

8.
Environ Sci Pollut Res Int ; 31(14): 20881-20897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381295

RESUMO

The presence of high chromium (Cr) levels induces the buildup of reactive oxygen species (ROS), resulting in hindered plant development. Riboflavin (vitamin B2) is produced by plants, fungi, and microbes. It serves as a precursor to the coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which play a crucial role in cellular metabolism. The objective of this work was to clarify the underlying mechanisms by which riboflavin alleviates Cr stress in Praecitrullus fistulosus L. Further, the role of riboflavin in growth, ions homeostasis, methylglyoxal detoxification, and antioxidant defense mechanism are not well documented in plants under Cr toxicity. We found greater biomass and minimal production of ROS in plants pretreated with riboflavin under Cr stress. Results manifested a clear abridge in growth, chlorophyll content, and nutrient uptake in Indian squash plants exposed to Cr stress. Findings displayed that Cr stress visibly enhanced oxidative injury reflected as higher malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2•‒), methylglyoxal (MG) levels alongside vivid lipoxygenase activity. Riboflavin strengthened antioxidant system, enhanced osmolyte production and improved membrane integrity. Riboflavin diminished Cr accumulation in aerial parts that led to improved nutrient acquisition. Taken together, riboflavin abridged Cr phytotoxic effects by improving redox balance because plants treated with riboflavin had strong antioxidant system that carried out effective ROS detoxification. Riboflavin protected membrane integrity that, in turn, improved nutrient uptake in plants.


Assuntos
Antioxidantes , Cucurbita , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Aldeído Pirúvico , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Plantas/metabolismo , Riboflavina/metabolismo
9.
Heliyon ; 10(13): e33901, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027601

RESUMO

Tamarindus indica, a beneficial herb, has many health benefits but there is limited research on its use in fish nutrition industry. The current study investigated the effects of incorporating extracts of T. indica into the canola meal-based diets of Cyprinus carpio (common carp); following which, the growth, digestibility, carcass and hematological markers were assessed. A total of six diets were formulated with varying concentrations of T. indica extracts (TIE) viz, 0 %, 0.5 %, 1 %, 1.5 %, 2 % and 2.5 %. The fish (N = 270, 15 fish/tank with triplicates) in each tank were fed experimental diets for 70 days. The study demonstrated that TIE supplementation significantly improved the growth of common carp when compared to 0 % TIE level (control). The best results were observed at 1 % TIE level for the specific growth rate (1.68 ± 0.03 %), weight gain (15.00 ± 0.57 g), and feed conversion ratio (1.36 ± 0.05). Conversely, the 2.5 % TIE level gave the least improvement in terms of growth performance. Specifically for nutrient digestibility, the maximum values of crude protein (CP, 67.60 ± 0.83 %), crude fat (CF, 67.49 ± 0.45 %) and gross energy (GE, 70.90 ± 0.56 %) were recorded at 1 % TIE level. In addition, the best results of body composition (protein: 63.92 ± 0.06 %, ash: 18.60 ± 0.03 %, fat: 7.12 ± 0.02 % and moisture: 10.36 ± 0.04 %) and hematological indices, were measured in carps fed with 1 % supplementation level. In conclusion, the overall health of C. carpio fingerlings was improved with TIE supplementation in the diet containing 1 % TIE.

10.
Chemosphere ; 358: 142203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697571

RESUMO

Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.


Assuntos
Ácido Gálico , Sulfadiazina , Curtume , Triticum , Águas Residuárias , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Águas Residuárias/química , Sulfadiazina/toxicidade , Cromo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Folhas de Planta/efeitos dos fármacos
11.
J Trace Elem Med Biol ; 84: 127443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579498

RESUMO

The following investigation was carried out to determine the effects of Selenium nanoparticles (Se NPs) on the growth rates, nutrient digestibility, and hematology of Cirrhinus mrigala fingerlings fed sunflower meal as basal diet. The experiment included seven test diets with varying Se levels (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg) based on Se NPs supplementation. Chromic oxide, an inert maker, was also added. Fingerlings were fed at a rate of 5% of their body weight. The test meal of 1 mg/kg Se NPs resulted in the highest weight gain (12.31 g) and the lowest feed conversion ratio (1.58). Best hematological indices (RBCs 2.84 106 mm-3, WBCs 7.79 103 mm-3, PLT 66, Hb 8.5 g/100 ml, PCV 25% and MCV 190 fl) and maximum nutrient absorption (crude protein 72%, ether extract 73% and gross energy 67%) were also observed in the case of 1 mg/kg supplementation of Se NPs. Hematology studies indicated that when fish were fed 0.5 mg/kg Se NPs, their levels began to rise. Maximum results were achieved with feed containing 1 mg/kg of Se NPs, but when the concentration increased above 1 mg/kg, the values began to decline. Instead, nutrient digestibility began to increase when the concentration of Se NPs increased to 1 mg/kg and abruptly started to decline with a further increase in Se NPs. The results demonstrated that a sunflower meal-based diet supplemented with Se NPs (1 mg/kg) increased the growth performance, nutritional digestibility, and hematology of C. mrigala fingerlings.


Assuntos
Suplementos Nutricionais , Nanopartículas , Selênio , Animais , Selênio/farmacologia , Selênio/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Digestão/efeitos dos fármacos , Nutrientes/metabolismo , Ração Animal/análise
12.
Sci Rep ; 14(1): 13526, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866883

RESUMO

Oreochromis niloticus fingerlings (5.15 ± 0.02 g; n = 315) were fed with different types of biochar (BC)-supplemented sunflower meal-based (SFM) diet to investigate the effects of various BC inclusions on their nutritional digestibility, body composition, hematology and mineral status for 60 days. Seven different diets were formulated based on the SFM based diet: one was a control (TD-I, CON) and the other six diets were supplemented with 2% BC derived from different sources. These BCs were derived from the following: cotton stick (CSBC, TD-II), wheat straw (WSBC, TD-III), corn cob (CCBC, TD-IV), house waste (HWBC, TD-V), grass waste (GWBC, TD-VI), and green waste (GwBC, TD-VII) biochar. There were three replicates for each test diet. Each tank had fifteen tilapia fingerlings, and they were fed with 5% of their live wet weight and twice daily. The outcomes showed that the supplementation of CCBC significantly elevated the growth, nutrient absorption, and body composition of the O. niloticus fingerlings (p < 0.05); with concomitant lowering of the quantity of nutrients released into the water bodies whereas HWBC gave negative impacts. The maximal mineral absorption efficiency (Ca, Na, K, Cu, Fe, P, and Zn) was achieved by the supplementation of 2% CCBC. All hematological parameters showed positive improvements (p < 0.05) with CCBC. Interestingly, CCBC significantly improved the growth, digestibility, body composition, hematology, and mineral status of O. niloticus.


Assuntos
Ração Animal , Composição Corporal , Carvão Vegetal , Ciclídeos , Minerais , Animais , Composição Corporal/efeitos dos fármacos , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Ração Animal/análise , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Minerais/análise , Suplementos Nutricionais , Digestão , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária
13.
Biol Trace Elem Res ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698173

RESUMO

This research was conducted to validate the beneficial effects of incorporating dietary cinnamon (Cinnamomum zeylanicum) powder (CzP) in alleviating lead (Pb) poisoning in fish. Healthy Catla catla individuals (16.36 ± 0.19 g/fish) were distributed across 18 tanks in triplicate groups. The experimental groups were as follows: Control group: fish without supplementation or exposure to Pb; positive control group: fish without supplementation but exposed to 1 mg/L Pb; 5 g/kg CzP along with 1 mg/L Pb exposure; 10 g/kg CzP along with 1 mg/L Pb exposure; 15 g/kg CzP along with 1 mg/L Pb exposure; and 20 g/kg CzP along with 1 mg/L Pb exposure. The trial continued for a period of 60 days. Waterborne Pb had a deleterious effect on fish growth performance, body composition, blood profile, and digestive enzyme activity, along with elevated Pb accumulation in various tissues. Conversely, consumption of cinnamon effectively mitigated the toxic potential of Pb and enhanced fish longevity. Notably, 10 g/kg CzP boosted growth, improved carcass quality, reversed blood indices, restored enzyme function in the gut, and mitigated Pb accumulation in tissues. In summary, the findings revealed that incorporating 10 g/kg of CzP as a dietary supplement in C. catla aquaculture could effectively counteract heavy metal toxicity.

14.
Chemosphere ; 364: 143098, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151577

RESUMO

Global climate change is anticipated to shift the soil bacterial community structure and plant nutrient utilization. The use of biochar amendment can positively influence soil bacterial community structure, soil properties, and nutrient use efficiency of crops. However, little is known about the underlying mechanism and response of bacterial community structure to biochar amendment, and its role in nutrient enhancement in soil and plants under elevated CO2. Herein, the effect of biochar amendment (0, 0.5, 1.5%) on soil bacterial community structure, spinach growth, physiology, and soil and plant nutrient status were investigated under two CO2 concentrations (400 and 600 µmol mol-1). Findings showed that biochar application 1.5% (B.2.E) significantly increased the abundance of the bacterial community responsible for growth and nutrient uptake i.e. Firmicutes (42.25%) Bacteroidetes (10.46%), and Gemmatimonadetes (125.75%) as compared to respective control (CK.E) but interestingly abundance of proteobacteria decreased (9.18%) under elevated CO2. Furthermore, the soil available N, P, and K showed a significant increase in higher biochar-amended treatments under elevated CO2. Spinach plants exhibited a notable enhancement in growth and photosynthetic pigments when exposed to elevated CO2 levels and biochar, as compared to ambient CO2 conditions. However, there was variability observed in the leaf gas exchange attributes. Elevated CO2 reduced spinach roots and leaves nutrient concentration. In contrast, the biochar amendment (B2.E) enhanced root and shoot Zinc (494.99%-155.33%), magnesium (261.15%-183.37%), manganese (80.04%-152.86%), potassium (576.24%-355.17%), calcium (261.88%-165.65%), copper (325.42%-282.53%) and iron (717.63%-177.90%) concentration by influencing plant physiology and bacterial community. These findings provide insights into the interaction between plant and bacterial community under future agroecosystems in response to the addition of biochar contributing to a deeper understanding of ecological dynamics.

15.
Front Plant Sci ; 15: 1336639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993939

RESUMO

Better crop stand establishment, a function of rapid and uniform seedling emergence, depends on the activities of germination-related enzymes, which is problematic when there is insufficient soil moisture. Different ways are in practice for counteracting this problem, including seed priming with different chemicals, which are considered helpful in obtaining better crop stand establishment to some extent through improved seed germination and seedling emergence. In this growth room experiment, caffeine was used as a seed priming agent to improve germination under moisture scarcity. Polyethylene glycol-8000 (18%) was added to Hoagland's nutrient solution to create drought stress (-0.65 MPa). The experiment was arranged in a completely randomized design (CRD), having four replications of each treatment. A newly developed wheat genotype SB-1 was used for the experimentation. Different doses of caffeine, i.e., 4 ppm, 8 ppm, 12 ppm, and 16 ppm, including no soaking and water soaking, were used as seed priming treatments. Water deficit caused oxidative stress and adversely affected the seed germination, seedling vigor, activities of germination enzymes, photosynthetic pigments, and antioxidative defense mechanism in roots and shoots of seedlings. Caffeine seed priming ameliorated the negative effects of water deficit on seed germination and seedling vigor, which was attributed to the reduction in lipid peroxidation and improvement in the activities of germination-related enzymes like glucosidase, amylase, and protease. Conclusively, seed priming with 12 ppm caffeine outperformed the other treatments and hence is recommended for better crop stand establishment under conditions of soil moisture deficit.

16.
Front Plant Sci ; 15: 1327552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405588

RESUMO

Introduction: The escalating threat of drought poses a significant challenge to sustainable food production and human health, as water scarcity adversely impacts various aspects of plant physiology. Maize, a cornerstone in staple cereal crops, faces the formidable challenge of drought stress that triggers a series of transformative responses in the plant. Methods: The present study was carried out in two sets of experiments. In first experiment, drought stress was applied after maintaining growth for 45 days and then irrigation was skipped, and plant samples were collected at 1st, 3rd and 6th day of drought interval for evaluation of changes in plant growth, water relation (relative water content) and antioxidants activity by inoculating indigenously isolated drought tolerant biofilm producing rhizobacterial isolates (Bacillus subtilis SRJ4, Curtobacterium citreum MJ1). In the second experiment, glycine betaine was applied as osmoregulator in addition to drought tolerant PGPR to perceive modulation in photosynthetic pigments (Chlorophyll a and b) and plant growth under varying moisture stress levels (100, 75 and 50% FC). Results and discussion: Results of the study revealed upsurge in root and shoot length, fresh and dry biomass of root and shoot besides increasing chlorophyll contents in water stressed inoculated plants compared to uninoculated plants. Glycine betaine application resulted in an additional boost to plant growth and photosynthetic pigments, when applied in combination with bacterial inoculants. However, both bacterial inoculants behaved differently under drought stress as evident from their biochemical and physiological attributes. Isolate SRJ4 proved to be superior for its potential to express antioxidant activity, leaf water potential and relative water contents and drought responsive gene expression while isolate MJ1 showed exclusive increase in root dry biomass and plant P contents. Though it is quite difficult to isolate the bacterial isolates having both plant growth promoting traits and drought tolerance together yet, such biological resources could be an exceptional option to be applied for improving crop productivity and sustainable agriculture under abiotic stresses. By exploring the combined application of PGPR and glycine betaine, the study seeks to provide insights into potential strategies for developing sustainable agricultural practices aimed at improving crop resilience under challenging environmental conditions.

17.
Am J Cardiovasc Dis ; 14(3): 153-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021522

RESUMO

BACKGROUND: Disparities in acute myocardial infarction (AMI)-related outcomes have been reported before the COVID-19 pandemic. We studied in-hospital outcomes of AMI across demographic groups in the United States during the early COVID-19 pandemic. METHODS: The National Inpatient Sample (NIS) database was queried for 2020 to identify AMI-related hospitalizations based on appropriate ICD-10-CM codes categorized by sex, race, and hospital region categories. The primary outcome was in-hospital mortality in females, racial and ethnic minority groups, and Northeast hospital region compared with males, White patients, and Midwest hospital region, respectively. Multivariable regression analysis was used to calculate the adjusted odds ratio and mean difference. RESULTS: A total of 820,893 AMI-related hospitalizations were identified during the study period. On adjusted analysis, during the early COVID-19 pandemic, females had lower odds of in-hospital mortality [aOR 0.89 (0.85-0.92); P < 0.01] and revascularization [aOR 0.68 (0.66-0.69); P < 0.01] than males. Racial and ethnic based analysis showed that Asian/Pacific Islander patients had higher odds of in-hospital mortality [aOR 1.13 (1.03-1.25); P < 0.01] than White patients. During the early COVID-19 pandemic, Northeast and Western region hospitals had higher odds of in-hospital mortality, lower odds of revascularization, longer length of stay, and higher total hospitalization costs than Midwest region hospitals. CONCLUSIONS: Our study disclosed disparities in AMI-related mortality and revascularization by sex, race and ethnic, and region during the early COVID-19 pandemic. Special attention should be given to at-risk populations. Whether these disparities continue in the post-vaccination era warrants further study.

18.
Environ Sci Pollut Res Int ; 31(23): 34526-34549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709411

RESUMO

Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.


Assuntos
Biodegradação Ambiental , Hesperidina , Metais Pesados , Metais Pesados/metabolismo , Hesperidina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 14(1): 19437, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169199

RESUMO

With the anticipated foliar application of nanoparticles (NPs) as a potential strategy to improve crop production and ameliorate heavy metal toxicity, it is crucial to evaluate the role of NPs in improving the nutrient content of plants under Lead (Pb) stress for achieving higher agriculture productivity to ensure food security. Herein, Brassica napus L. grown under Pb contaminated soil (300 mg/kg) was sprayed with different rates (0, 25, 50, and 100 mg/L) of TiO2 and ZnO-NPs. The plants were evaluated for growth attributes, photosynthetic pigments, leaf exchange attributes, oxidant and antioxidant enzyme activities. The results revealed that 100 mg/L NPs foliar application significantly augmented plant growth, photosynthetic pigments, and leaf gas exchange attributes. Furthermore, 100 mg/L TiO2 and ZnO-NPs application showed a maximum increase in SPAD values (79.1%, 68.9%). NPs foliar application (100 mg/L TiO2 and ZnO-NPs) also substantially reduced malondialdehyde (44.3%, 38.3%), hydrogen peroxide (59.9%, 53.1%), electrolyte leakage (74.8%, 68.3%), and increased peroxidase (93.8%, 89.1%), catalase (91.3%, 84.1%), superoxide dismutase (81.8%, 73.5%) and ascorbate peroxidase (78.5%, 73.7%) thereby reducing Pb accumulation. NPs foliar application (100 mg/L) significantly reduced root Pb (45.7%, 42.3%) and shoot Pb (84.1%, 76.7%) concentration in TiO2 and ZnO-NPs respectively, as compared to control. Importantly, macro and micronutrient analysis showed that foliar application 100 mg/L TiO2 and ZnO-NPs increased shoot zinc (58.4%, 78.7%) iron (79.3%, 89.9%), manganese (62.8%, 68.6%), magnesium (72.1%, 93.7%), calcium (58.2%, 69.9%) and potassium (81.5%, 68.6%) when compared to control without NPs. The same trend was observed for root nutrient concentration. In conclusion, we found that the TiO2 and ZnO-NPs have the greatest efficiency at 100 mg/L concentration to alleviate Pb induced toxicity on growth, photosynthesis, and nutrient content of Brassica napus L. NPs foliar application is a promising strategy to ensure sustainable agriculture and food safety under metal contamination.


Assuntos
Antioxidantes , Brassica napus , Chumbo , Fotossíntese , Folhas de Planta , Titânio , Óxido de Zinco , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Fotossíntese/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Nutrientes/metabolismo , Nanopartículas Metálicas/química , Nanopartículas , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
20.
Chemosphere ; 364: 143113, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151580

RESUMO

Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA