RESUMO
Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection. Both antibody and T-cell responses against immunodominant GAS virulence factors, including M protein, cross-react with host tissue proteins, triggering an inflammatory response leading to permanent heart damage. However, in some ARF/RHD-endemic regions, throat carriage of GAS is low. Because Streptococcus dysgalactiae subspecies equisimilis organisms, also known as ß-hemolytic group C streptococci and group G streptococci (GGS), also express M protein, we postulated that streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. Using a model initially developed to investigate the uniquely human disease of ARF/RHD, we have discovered that GGS causes interleukin 17A/interferon γ-induced myocarditis and valvulitis, hallmarks of ARF/RHD. Remarkably the histological, immunological, and functional changes in the hearts of rats exposed to GGS are identical to those exposed to GAS. Furthermore, antibody cross-reactivity to cardiac myosin was comparable in both GGS- and GAS-exposed animals, providing additional evidence that GGS can induce and/or exacerbate ARF/RHD.
Assuntos
Doenças Autoimunes/etiologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Cardiopatia Reumática/etiologia , Infecções Estreptocócicas/patologia , Streptococcus/imunologia , Animais , Antígenos de Bactérias/imunologia , Doenças Autoimunes/microbiologia , Doenças Autoimunes/fisiopatologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Modelos Animais de Doenças , Feminino , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/microbiologia , Doenças das Valvas Cardíacas/fisiopatologia , Miocardite/etiologia , Miocardite/microbiologia , Miocardite/fisiopatologia , Ratos Endogâmicos Lew , Cardiopatia Reumática/microbiologia , Cardiopatia Reumática/fisiopatologia , Streptococcus/patogenicidadeRESUMO
The role of group A streptococcal and Streptococcus dysgalactiae subspecies equisimilis M-protein specific Abs and T-cells in endothelial cell activation was investigated using cultured rat aortic endothelial cells, and in a rat model of autoimmune valvulitis. Heat inactivated serum and mononuclear cells from streptococcal M-protein immunized rats independently induced upregulation of the endothelial cell adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in cultured cells. We also observed T-cell migration across endothelial cell monolayers incubated with serum from M-protein-immunized rats. Furthermore, we observed VCAM-1 and ICAM-1 expression in the myocardium of rats injected with M-protein compared to control animals. These observations support the contention that initial interactions between streptococcal M-protein specific Abs and/or T-cells with the heart endothelium lead to endothelial cell activation followed by transmigration of M-protein specific T-cells into heart tissue leading to an inflammatory process that leads to carditis in rheumatic fever and rheumatic heart disease.