Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098070

RESUMO

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Assuntos
Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Ligantes , Linfócitos T CD8-Positivos , Ligação Proteica
2.
Bioorg Med Chem Lett ; 96: 129492, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778428

RESUMO

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation. Herein we describe the discovery and optimization of small molecule PPI (protein-protein interaction) inhibitors of NKG2D/NKG2DL. Rapid SAR was guided by structure-based drug design and accomplished by iterative singleton and parallel medicinal chemistry synthesis. These efforts resulted in the identification of several potent analogs (14, 21, 30, 45) with functional activity and improved LLE.


Assuntos
Proteínas de Transporte , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas de Transporte/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Ligação Proteica , Células Matadoras Naturais/metabolismo , Ligantes
3.
Biochemistry ; 60(41): 3114-3124, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34608799

RESUMO

Achieving selectivity across the human kinome is a major hurdle in kinase inhibitor drug discovery. Assays using active, phosphorylated protein kinases bias hits toward poorly selective inhibitors that bind within the highly conserved adenosine triphosphate (ATP) pocket. Targeting inactive (vs active) kinase conformations offers advantages in achieving selectivity because of their more diversified structures. Kinase cascade assays are typically initiated with target kinases in their unphosphorylated inactive forms, which are activated during the assays. Therefore, these assays are capable of identifying inhibitors that preferentially bind to the unphosphorylated form of the enzyme in addition to those that bind to the active form. We applied this cascade assay to the emerging cancer immunotherapy target hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase that negatively regulates T cell receptor signaling. Using this approach, we discovered an allosteric, inactive conformation-selective triazolopyrimidinone HPK1 inhibitor, compound 1. Compound 1 binds to unphosphorylated HPK1 >24-fold more potently than active HPK1, is not competitive with ATP, and is highly selective against kinases critical for T cell signaling. Furthermore, compound 1 does not bind to the isolated HPK1 kinase domain alone but requires other domains. Together, these data indicate that 1 is an allosteric HPK1 inhibitor that attenuates kinase autophosphorylation by binding to a pocket consisting of residues within and outside of the kinase domain. Our study demonstrates that cascade assays can lead to the discovery of highly selective kinase inhibitors. The triazolopyrimidinone described in this study may represent a privileged chemical scaffold for further development of potent and selective HPK1 inhibitors.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinonas/química , Triazóis/química , Proteínas Adaptadoras de Transdução de Sinal/química , Ensaios de Triagem em Larga Escala , Humanos , Fosfoproteínas/química , Fosforilação , Proteínas Serina-Treonina Quinases/química
4.
J Chem Inf Model ; 58(10): 2057-2068, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30204440

RESUMO

Since many projects at pharmaceutical organizations get their start from a high-throughput screening (HTS) campaign, improving the quality of the HTS deck can improve the likelihood of discovering a high-quality lead molecule that can be progressed to a drug candidate. Over the past decade, Janssen has implemented several strategies for external compound acquisition to augment the screening deck beyond the chemical space and number of molecules synthesized for internal projects. In this report, we analyzed the performance of each of those compound collections in the screening campaigns performed internally within Janssen during the last five years. We classified the screening library into two broad categories: Internal and External. The comparison of the performance of these sets of libraries was done by considering the primary, confirmation, and dose response hit rates. Our analysis revealed that Internal compounds (resulting from numerous medicinal chemistry efforts against diverse protein targets) have higher average confirmation hit rates than External ones; however, actives from both categories show similar probabilities of hitting multiple distinct targets. We also investigated the property landscape of both sets of libraries to identify the key elements which make a difference in these categories of compounds. From this analysis, Janssen aims to understand the descriptor landscape of the compounds with the highest hit rates and to use them for improving its future acquisition strategies as well as to inform our plating strategy.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Software
5.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134571

RESUMO

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/química , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Quinase 4 de Receptor Acoplado a Proteína G/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
J Immunol ; 187(3): 1403-10, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21715684

RESUMO

Chemerin, a ligand for the G-protein coupled receptor chemokine-like receptor 1, requires C-terminal proteolytic processing to unleash its chemoattractant activity. Proteolytically processed chemerin selectively attracts specific subsets of immunoregulatory APCs, including chemokine-like receptor 1-positive immature plasmacytoid dendritic cells (pDC). Chemerin is predicted to belong to the structural cathelicidin/cystatin family of proteins composed of antibacterial polypeptide cathelicidins and inhibitors of cysteine proteinases (cystatins). We therefore hypothesized that chemerin may interact directly with cysteine proteases, and that it might also function as an antibacterial agent. In this article, we show that chemerin does not inhibit human cysteine proteases, but rather is a new substrate for cathepsin (cat) K and L. cat K- and L-cleaved chemerin triggered robust migration of human blood-derived pDC ex vivo. Furthermore, cat K- and L-truncated chemerin also displayed antibacterial activity against Enterobacteriaceae. Cathepsins may therefore contribute to host defense by activating chemerin to directly inhibit bacterial growth and to recruit pDC to sites of infection.


Assuntos
Antibacterianos/sangue , Catepsina B/fisiologia , Catepsina K/fisiologia , Catepsina L/fisiologia , Quimiocinas/sangue , Fatores Quimiotáticos/sangue , Cisteína Proteases/sangue , Receptores de Quimiocinas/sangue , Animais , Células CHO , Movimento Celular/imunologia , Cricetinae , Cricetulus , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Recombinantes/sangue , Especificidade por Substrato/imunologia
7.
Cytokine ; 55(2): 168-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632261

RESUMO

Chemokines and their receptors control cell migration associated with routine immune surveillance, inflammation and development. They are also implicated in a large number of inflammatory diseases, cancer and HIV. Here we describe a rapid and efficient way to express and purify milligram quantities of multiple chemokine ligands (CCL7/MCP-3, CCL14/HCC-1, CCL3/MIP-1α and CXCL8/IL-8) containing C-terminal modifications to enable coupling to fluorescent dyes or small molecules such as biotin, in vitro. These labeled chemokines display wild-type behavior in both receptor binding and calcium mobilization assays. The ability to rapidly and inexpensively produce labeled chemokines opens the way for their use in many applications, including non-traditional chemokine-receptor interaction studies, both on intact cells and with purified receptor reconstituted in artificial membranes in vitro. Furthermore, the ability to immobilize chemokines to obtain ligand affinity columns aids in efforts to purify chemokine receptors for structural and biophysical studies, by facilitating the separation of functional proteins from their non-functional counterparts.


Assuntos
Quimiocinas/química , Quimiocinas/isolamento & purificação , Cromatografia de Afinidade/métodos , Biotina/química , Biotina/metabolismo , Quimiocina CCL3/química , Quimiocina CCL3/genética , Quimiocina CCL3/isolamento & purificação , Quimiocina CCL7/química , Quimiocina CCL7/genética , Quimiocina CCL7/isolamento & purificação , Quimiocinas/genética , Quimiocinas CC/química , Quimiocinas CC/genética , Quimiocinas CC/isolamento & purificação , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/isolamento & purificação , Ligantes , Ensaio Radioligante , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
SLAS Discov ; 26(1): 122-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484379

RESUMO

Interleukin-23 (IL-23) is a key cytokine implicated in the pathogenesis of autoimmune disorders, including psoriasis and ulcerative colitis. Although targeted IL-23 antibody therapeutics are used clinically, there are no small-molecule therapeutics that selectively inhibit IL-23 signaling. To address this gap, we developed a high-throughput screening strategy employing an IL-23-responsive cell-based luciferase reporter gene assay as the primary screen, with cellular cytotoxicity and off-target counter screening assays to identify IL-23 pathway-specific inhibitors. The primary screening assay utilized avian DT40 cells, genetically engineered to overexpress IL-23R, IL-12Rß1, STAT5, and firefly luciferase, in a 1536-well format. Treatment of these cells with IL-23 resulted in the phosphorylation and activation of STAT5, which was completely inhibited by the pan-JAK inhibitor tofacitinib. Assay performance was robust, with signal-to-background >7-fold and Z' > 0.5 over 40 screening plates (approximately 24,000 compounds), with a hit rate of 5% (>66.9% activity cutoff). Of these 1288 hits, 66% were identified as cytotoxic by incubating the IL-23 reporter cells with compound overnight and measuring cell viability. Further assessment of specificity via examination of impact on off-target IFN-γ signaling eliminated an additional 230 compounds, leaving 209 that were evaluated for dose-response activity. Of these compounds, 24 exhibited IC50 values of <7 µM and ≥80% inhibition of IL-23 activity, with >3-fold selectivity over IFN-γ inhibition, thus representing promising starting points for prospective IL-23 pathway small-molecule inhibitors.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Subunidade p19 da Interleucina-23/metabolismo , Transdução de Sinais/efeitos dos fármacos , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos
9.
Adv Protein Chem Struct Biol ; 121: 253-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32312425

RESUMO

Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.


Assuntos
Artrite/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Interleucina-17/antagonistas & inibidores , Interleucina-23/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Artrite/genética , Artrite/imunologia , Artrite/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Sítios de Ligação/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fatores Imunológicos/química , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-23/química , Interleucina-23/genética , Interleucina-23/imunologia , Modelos Moleculares , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
J Surg Educ ; 77(3): 635-642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31954663

RESUMO

OBJECTIVES: The ability to assess a trainee's technical skill in a manner that maintains patient safety is critical to resident education. To do so, senior plastic surgery educators frequently ask residents to draw their proposed operation, presuming that a surgeon's ability to perform a surgery is reflected in his or her ability to diagram the procedure, independent of artistic ability. The purpose of this study was to delineate the relationship between the ability to draw a surgical procedure and execute it in a simulated model, and to determine if the ability to draw a procedure depends on artistic ability. DESIGN: Participants in varying levels of knowledge and surgical skill were asked to draw a 4-strand cruciate tendon repair and subsequently perform the procedure on a validated, simulated model. The participants were graded according to Objective Structured Assessment of Technical Skills scales by 2 blinded hand surgeon examiners. Statistical analysis was performed in SAS 9.4 with Spearman's rank correlation coefficient. SETTING: The study was performed at Baylor Scott and White Health in Temple, TX in an office-based laboratory setting. Participants Forty participants comprised of senior medical students, plastic/orthopedic surgery residents, and plastic/hand surgery attendings. All 40 participants entered and completed the study. RESULTS: A statistically significant strongly positive correlation was found between overall assessment of drawing and overall assessment of performing the surgical procedure (p = 0.004). At the same time, the assessment of ability to draw the procedure was not associated with a general ability to draw or previous art training (p = 0.28). CONCLUSIONS: Our findings support the use of drawing a specific procedure as an assessment tool to evaluate a surgeon's ability to perform a procedure.


Assuntos
Internato e Residência , Ortopedia , Estudantes de Medicina , Cirurgiões , Competência Clínica , Feminino , Mãos , Humanos , Ortopedia/educação
11.
Curr Protoc Chem Biol ; 12(1): e78, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150343

RESUMO

Small-molecule drug discovery can be hindered by the formation of aggregates that act as non-selective inhibitors of drug targets. Such aggregates appear as false positives in high-throughput screening campaigns and can bedevil structure-activity relationships during compound optimization. Protocols are described for resonant waveguide grating (RWG) and dynamic light scattering (DLS) as microplate-based high-throughput approaches to identify compound aggregation. Resonant waveguide grating and dynamic light scattering give equivalent results for the compound test set, as assessed with Bland-Altman analysis. © 2019 The Authors. Basic Protocol 1: Resonant waveguide grating (RWG) in 384-well or 1536-well plate format to detect compound aggregation Basic Protocol 2: Dynamic light scattering (DLS) in 384-well plate format to detect compound aggregation.


Assuntos
Artefatos , Ensaios de Triagem em Larga Escala/métodos , Preparações Farmacêuticas/química , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas/métodos , Difusão Dinâmica da Luz
12.
Protein Expr Purif ; 66(1): 73-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19275940

RESUMO

Chemokine receptors are a specific class of G-protein-coupled receptors (GPCRs) that control cell migration associated with routine immune surveillance, inflammation and development. In addition to their roles in normal physiology, these receptors and their ligands are involved in a large number of inflammatory diseases, cancer and AIDS, making them prime therapeutic targets in the pharmaceutical industry. Like other GPCRs, a significant obstacle in determining structures and characterizing mechanisms of activation has been the difficulty in obtaining high levels of pure, functional receptor. Here we describe a systematic effort to express the chemokine receptor CCR1 in mammalian cells, and to purify and reconstitute it in functional form. The highest expression levels were obtained using an inducible HEK293 system. The receptor was purified using a combination of N- (StrepII or Hemagglutinin) and C-terminal (His8) affinity tags. Function was assessed by ligand binding using a novel fluorescence polarization assay with fluorescein-labeled chemokine. A strict dependence of function on the detergent composition was observed, as solubilization of CCR1 in n-dodecyl-beta-D-maltopyranoside/cholesteryl hemisuccinate yielded functional receptor with a K(d) of 21 nM for the chemokine CCL14, whereas it was non-functional in phosphocholine detergents. Differences in function were observed despite the fact that both these detergent types maintained the receptor in a state characterized by monomers and small oligomers, but not large aggregates. While optimization is still warranted, yields of approximately 0.1-0.2mg of pure functional receptor per 10(9) cells will permit biophysical studies of this medically important receptor.


Assuntos
Receptores CCR1/isolamento & purificação , Receptores CCR1/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Quimiocinas/metabolismo , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Detergentes/química , Humanos , Micelas , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptores CCR1/genética
13.
Biochem J ; 409(3): 635-49, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18177271

RESUMO

Inappropriate chemokine/receptor expression or regulation is linked to many diseases, especially those characterized by an excessive cellular infiltrate, such as rheumatoid arthritis and other inflammatory disorders. There is now overwhelming evidence that chemokines are also involved in the progression of cancer, where they function in several capacities. First, specific chemokine-receptor pairs are involved in tumour metastasis. This is not surprising, in view of their role as chemoattractants in cell migration. Secondly, chemokines help to shape the tumour microenvironment, often in favour of tumour growth and metastasis, by recruitment of leucocytes and activation of pro-inflammatory mediators. Emerging evidence suggests that chemokine receptor signalling also contributes to survival and proliferation, which may be particularly important for metastasized cells to adapt to foreign environments. However, there is considerable diversity and complexity in the chemokine network, both at the chemokine/receptor level and in the downstream signalling pathways they couple into, which may be key to a better understanding of how and why particular chemokines contribute to cancer growth and metastasis. Further investigation into these areas may identify targets that, if inhibited, could render cancer cells more susceptible to chemotherapy.


Assuntos
Movimento Celular , Quimiocinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Animais , Comunicação Celular/imunologia , Movimento Celular/imunologia , Quimiocinas/química , Quimiocinas/imunologia , Humanos , Metástase Neoplásica/patologia , Neoplasias/imunologia , Transdução de Sinais/imunologia
14.
Exp Hematol ; 34(8): 1021-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16863908

RESUMO

The host response to tissue injury and/or infection is dependent on the action of numerous extracellular proteases. Proteolytic cascades trigger blood clotting, fibrinolysis, and complement activation, while proteases released upon leukocyte degranulation are integral to the processes of inflammation and immunity. Modulation of effector protein activity by proteases provides a critical layer of posttranslational control that enables rapid enzymatic regulation of target proteins. This report reviews the emerging literature describing a novel class of proteolytic targets, leukocyte chemoattractants, and, in particular, chemerin, a dendritic cell and macrophage chemoattractant activated by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. As chemoattractants are critical for both systemic leukocyte positioning by triggering integrin activation and subsequent recruitment from circulation, and local intratissue leukocyte positioning via chemotaxis, modulation of attractant activities by proteases may have profound effects on the immune response.


Assuntos
Fatores Quimiotáticos/fisiologia , Quimiotaxia de Leucócito , Imunidade Inata , Peptídeo Hidrolases/fisiologia , Receptores de Quimiocinas/fisiologia , Proteínas ADAM/fisiologia , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Animais , Quimiocina CXCL12 , Quimiocinas CC/fisiologia , Quimiocinas CXC/fisiologia , Dipeptidil Peptidase 4/fisiologia , Humanos , Proteínas Inflamatórias de Macrófagos , Proteínas de Membrana/fisiologia , Monocinas/fisiologia , Receptores de Quimiocinas/química , Relação Estrutura-Atividade
15.
Exp Hematol ; 34(8): 1106-14, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16863918

RESUMO

OBJECTIVE: Chemokine-like receptor 1 (CMKLR1) is expressed by human antigen presenting cells and binds to chemerin, a proteolytically activatable chemoattractant. Here we assessed the expression of mCMKLR1 on mouse leukocytes, focusing on ex vivo dendritic cells (DC) and macrophages. mCMKLR1-expressing cells were evaluated for functional responses to chemerin. We examined the regulation of mCMKLR1 expression by exposure to toll-like receptor (TLR) ligands and cytokines. Finally, we evaluated ex vivo human ascites macrophages for huCMKLR1 expression and chemerin responsiveness. METHODS: A novel anti-mCMKLR1 monoclonal antibody was generated to assess mCMKLR1 expression by mouse leukocytes using flow cytometry. Mouse bone marrow-derived DC precursors, mouse peritoneal macrophages, and human ascites leukocytes were examined in functional assays (in vitro chemotaxis and intracellular calcium mobilization). RESULTS: During DC differentiation from bone marrow, mCMKLR1 is upregulated early and then diminishes with time in culture. Most DC in vivo do not detectably express the receptor. In contrast, freshly isolated F4/80+CD11b+ mouse serosal macrophages express mCMKLR1, bind a fluorescently labeled chemerin peptide, and display calcium signaling and migration to the active ligand. Interestingly, macrophage mCMKLR1 is suppressed by proinflammatory cytokines and TLR ligands, whereas treatment with TGF-beta upregulates the receptor. A small population of blood-borne F4/80+CD11b+ macrophages also expresses mCMKLR1. Freshly isolated macrophages from human ascites fluid express CMKLR1 and are chemerin responsive, as well. CONCLUSION: The conserved expression of CMKLR1 by macrophages in mouse and man, coupled with the stimuli-specific regulation of CMKLR1, may reflect a critical role for CMKLR1:chemerin in shaping the nature (either proinflammatory or suppressive) in macrophage-mediated immune responses.


Assuntos
Macrófagos/imunologia , Receptores Acoplados a Proteínas G/análise , Receptores Toll-Like/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Quimiocinas/fisiologia , Células Dendríticas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos/química , Camundongos , Dados de Sequência Molecular , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/fisiologia
16.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581512

RESUMO

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
J Health Care Poor Underserved ; 27(2): 685-99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27180703

RESUMO

UNLABELLED: Objectives Mexican-origin children living along the US-Mexico border in colonias communities are medically underserved, at great risk for obesity-related diseases, and rarely meet physical activity guidelines. This study examined the roles of parental social support and social norms for physical activity among these children. METHODS: Promotora-researchers conducted one-on-one interview-administered surveys with 99 Mexican-origin mother-child dyads (n=198). Survey items examined perceptions of familial social support and norms relating to physical activity. RESULTS: Parental social support for physical activity received by children was low, and gender differences were detected. Discrepancies between mother and child perceptions were also detected. CONCLUSIONS: High rates of overweight and obesity and low familial social support indicate a need for improved parental social support to increase physical activity levels and combat obesity among underserved Mexican-origin children residing in Texas border colonias.


Assuntos
Exercício Físico , Americanos Mexicanos , Sobrepeso , Criança , Feminino , Humanos , México , Texas
18.
J Biomol Screen ; 21(6): 608-19, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26969322

RESUMO

The primary objective of early drug discovery is to associate druggable target space with a desired phenotype. The inability to efficiently associate these often leads to failure early in the drug discovery process. In this proof-of-concept study, the most tractable starting points for drug discovery within the NF-κB pathway model system were identified by integrating affinity selection-mass spectrometry (AS-MS) with functional cellular assays. The AS-MS platform Automated Ligand Identification System (ALIS) was used to rapidly screen 15 NF-κB proteins in parallel against large-compound libraries. ALIS identified 382 target-selective compounds binding to 14 of the 15 proteins. Without any chemical optimization, 22 of the 382 target-selective compounds exhibited a cellular phenotype consistent with the respective target associated in ALIS. Further studies on structurally related compounds distinguished two chemical series that exhibited a preliminary structure-activity relationship and confirmed target-driven cellular activity to NF-κB1/p105 and TRAF5, respectively. These two series represent new drug discovery opportunities for chemical optimization. The results described herein demonstrate the power of combining ALIS with cell functional assays in a high-throughput, target-based approach to determine the most tractable drug discovery opportunities within a pathway.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , NF-kappa B/antagonistas & inibidores , Relação Estrutura-Atividade , Ligantes , Espectrometria de Massas/métodos , NF-kappa B/química , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Fator 5 Associado a Receptor de TNF/antagonistas & inibidores , Fator 5 Associado a Receptor de TNF/química , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/química
19.
J Mol Biol ; 342(4): 1279-91, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15351651

RESUMO

We report a detailed kinetic study of the folding of an alpha-helical membrane protein in a lipid bilayer environment. SDS denatured bacteriorhodopsin was folded directly into phosphatidylcholine lipid vesicles by stopped-flow mixing. The folding kinetics were monitored with millisecond time resolution by time-resolving changes in protein fluorescence as well as in the absorption of the retinal chromophore. The kinetics were similar to those previously reported for folding bacteriorhodopsin in detergent or lipid micelles, except for the presence of an additional apoprotein intermediate. We suggest this intermediate is a result of the greater internal two-dimensional pressure present in these lipid vesicles as compared to micelles. These results lay the groundwork for future studies aimed at understanding the mechanistic origin of the effect of lipid bilayer properties on protein folding. Furthermore, the use of biologically relevant phosphatidylcholine lipids, together with a straightforward rapid mixing process to initiate the folding reaction, means the method is generally applicable, and thus paves the way for an improved understanding of the in vitro folding of transmembrane alpha-helical proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana/química , Fosfolipídeos/química , Cinética , Espectrometria de Fluorescência
20.
J Mol Biol ; 342(4): 1293-304, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15351652

RESUMO

Research into the folding mechanisms of integral membrane proteins lags far behind that of water-soluble proteins, to the extent that the term protein folding is synonymous with water-soluble proteins. Hydrophobic membrane proteins, and particularly those with transmembrane alpha-helical motifs, are frequently considered too difficult to work with. We show that the stored curvature elastic stress of lipid bilayers can be used to guide the design of efficient folding systems for these integral membrane proteins. The curvature elastic stress of synthetic phosphatidylcholine/phosphatidylethanolamine lipid bilayers can be used to control both the rate of folding and the yield of folded protein. The use of a physical bilayer property generalises this approach beyond the particular chemistry of the lipids involved.


Assuntos
Proteínas de Membrana/química , Dobramento de Proteína , Bicamadas Lipídicas , Fosfolipídeos/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA