Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Endocr Disord ; 24(1): 26, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429765

RESUMO

BACKGROUND: Accumulating evidence has suggested that dietary polyphenols may be protective against metabolic syndrome (MetS); however, the available evidence is contradictory. The aim of this meta-analysis was to assess the association between dietary intake of polyphenols and the odds of MetS. METHODS: The PubMed and Scopus databases were systematically searched to obtain eligible studies. The risk of MetS for the highest versus the lowest intakes of total, subclasses and individual polyphenols were examined by pooling odds ratios (OR) and 95% confidence intervals (95%CI) using the random effects model. RESULTS: A total of 14 studies (6 cohort and 8 cross-sectional studies) involving a total of 50,366 participants with 10,879 cases of MetS were included. When various polyphenol compounds were pooled, they were significantly related to a 22% decreased odds of MetS (([5 studies]; OR: 0.78; 95%CI: 0.72-0.85). Higher intakes of total flavonoids (([9 studies]; OR: 0.78; 95%CI: 0.72-0.85), flavan-3-ols (([2 studies]; OR: 0.64; 95%CI: 0.43-0.94), isoflavones (([3 studies]; OR: 0.84; 95%CI: 0.75-0.93), stilbenes (([4 studies]; OR: 0.86; 95%CI: 0.76-0.97), flavones (([2 studies]; OR: 0.79; 95%CI: 0.71-0.89), and quercetin (([2 studies]; OR: 0.63; 95%CI: 0.43-0.93) were also significantly associated with a decreased risk of MetS. The associations were not modified by the age of the participants. No association was found for total polyphenols, phenolic acids, lignans, anthocyanins, and flavonols. CONCLUSION: The results of this meta-analysis supported that higher polyphenol intake can lower the risk of MetS.


Assuntos
Dieta , Síndrome Metabólica , Polifenóis , Humanos , Antocianinas , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/prevenção & controle
2.
Environ Res ; 245: 118019, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142730

RESUMO

In this study, a new core-shell Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) photocatalyst was prepared by sol-gel method and used to degrade diazinon (DZN) and chlorpyrifos (CPS) from aqueous solutions. The characteristics analyzed by various techniques indicate that the core-shell photocatalyst with a specific surface area of 992 m2/g, pore size of 1.35 nm and saturation magnetization of nanocomposite was 12 emu/g has been successfully synthesized and can be separated from the reaction solution by a magnetic field. The maximum efficiencies of DZN (98.8%) and CPS (99.9%) were provided at pH of 5, photocatalyst dosage of 0.6 g/L, pollutant concentration of 25 mg/L, radiation intensity of 15 W, and time of 60 min. The presence of anions such as sulfate, nitrate, bicarbonate, phosphate, and chloride had a negative effect on the performance of the photocatalysis system. Compared to the adsorption and photolysis systems alone, the photocatalytic process based on Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) under two UV and visible light sources showed a high efficiency of 90% in the reaction time of 60 min. The BOD5/COD ratio improved after 50 min to above 0.4 with TOC and COD removal rates >80%. Scavenging tests showed that •OH radical, hole (h+), electron (e-), and O2•- anion were produced in the reaction reactor, and the •OH radical was the dominant species in the degradation of DZN and CPS. The stability tests confirmed the recyclability of the photocatalyst in 360 min of reactions, with a minimum reduction of 7%. Energy consumption for the present system during different reactions was between 15.61 and 25.06 kWh/m3 for DZN degradation and 10-22.87 kWh/m3 for CPS degradation.


Assuntos
Clorpirifos , Estruturas Metalorgânicas , Praguicidas , Praguicidas/química , Diazinon , Dióxido de Silício , Catálise
3.
Cell Biochem Funct ; 42(1): e3906, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269502

RESUMO

The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Medicina Molecular , Qualidade de Vida , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistência a Medicamentos
4.
Cell Biochem Funct ; 42(3): e3993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532685

RESUMO

About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , Estrogênios , Proliferação de Células/genética , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38647679

RESUMO

Ultrasonic manufacturing has emerged as a promising eco-friendly approach to synthesize lipid-based nanocarriers for targeted drug delivery. This study presents the novel ultrasonic preparation of lipid nanocarriers loaded with Scutellaria barbata extract, repurposed for anticancer and antibacterial use. High-frequency ultrasonic waves enabled the precise self-assembly of DSPE-PEG, Span 40, and cholesterol to form nanocarriers encapsulating the therapeutic extract without the use of toxic solvents, exemplifying green nanotechnology. Leveraging the inherent anticancer and antibacterial properties of Scutellaria barbata, the study demonstrates that lipid encapsulation enhances the bioavailability and controlled release of the extract, which is vital for its therapeutic efficacy. Dynamic light scattering and transmission electron microscopy analyses confirmed the increase in size and successful encapsulation post-loading, along with an augmented negative zeta potential indicating enhanced stability. A high encapsulation efficiency of 91.93% was achieved, and in vitro assays revealed the loaded nanocarriers' optimized release kinetics and improved antimicrobial potency against Pseudomonas aeruginosa, compared to the free extract. The combination of ultrasonic synthesis and Scutellaria barbata in an eco-friendly manufacturing process not only advances green nanotechnology but also contributes to sustainable practices in pharmaceutical manufacturing. The data suggest that this innovative nanocarrier system could provide a robust platform for the development of nanotechnology-based therapeutics, enhancing drug delivery efficacy while aligning with environmental sustainability.

6.
Cell Commun Signal ; 21(1): 351, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098017

RESUMO

Oropharyngeal cancer, a subset of head and neck cancer, is increasingly recognized as a unique clinical entity primarily influenced by high-risk human papillomavirus (HPV) infections, particularly HPV-16. This review delves into the viral life cycle of HPV-16 and its interactions with host cells, with a specific focus on the crucial roles played by the viral oncoproteins E6 and E7. These oncoproteins drive cellular proliferation by targeting critical tumor suppressor proteins like p53 and Rb, resulting in uncontrolled cell growth and genomic instability. Furthermore, the significance of epigenetic modifications induced by HPV-16 and their implications is important for cancer progression. This comprehensive review provides valuable insights into the intricate molecular landscape of HPV-induced oropharyngeal cancer, shedding light on the development of targeted therapies and preventive strategies for this emerging global health concern. Video Abstract.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Neoplasias Orofaríngeas/patologia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia
7.
Ecotoxicol Environ Saf ; 260: 115066, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37262969

RESUMO

Membrane-based separation processes has been recently of significant global interest compared to other conventional separation approaches due to possessing undeniable advantages like superior performance, environmentally-benign nature and simplicity of application. Computational simulation of fluids has shown its undeniable role in modeling and simulation of numerous physical/chemical phenomena including chemical engineering, chemical reaction, aerodynamics, drug delivery and plasma physics. Definition of fluids can be occurred using the Navier-Stokes equations, but solving the equations remains an important challenge. In membrane-based separation processes, true perception of fluid's manner through disparate membrane modules is an important concern, which has been significantly limited applying numerical/computational procedures such s computational fluid dynamics (CFD). Despite this noteworthy advantage, the optimization of membrane processes using CFD is time-consuming and expensive. Therefore, combination of artificial intelligence (AI) and CFD can result in the creation of a promising hybrid model to accurately predict the model results and appropriately optimize membrane processes and phase separation. This paper aims to provide a comprehensive overview about the advantages of commonly-employed ML-based techniques in combination with the CFD to intelligently increase the optimization accuracy and predict mass transfer and the unfavorable events (i.e., fouling) in various membrane processes. To reach this objective, four principal strategies of AI including SL, USL, SSL and ANN were explained and their advantages/disadvantages were discussed. Then after, prevalent ML-based algorithm for membrane-based separation processes. Finally, the application potential of AI techniques in different membrane processes (i.e., fouling control, desalination and wastewater treatment) were presented.


Assuntos
Inteligência Artificial , Purificação da Água , Simulação por Computador , Algoritmos , Purificação da Água/métodos , Hidrodinâmica
8.
Int J Environ Health Res ; : 1-10, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967266

RESUMO

The relation of exposure to arsenic in drinking water during pregnancy to the risk of preterm birth (PTB) was contradictory. This meta-analysis aimed to examine the association between drinking water arsenic and PTB. A systematic search in PubMed and Scopus was performed to achieve all relevant studies. Odds ratios (OR) and 95% confidence intervals (CI) were used to pool data using the random-effect models. Overall, 11 studies with a total sample size of 3,404,189 participants were included in the meta-analysis. Arsenic exposure through drinking water during pregnancy was related to an increased risk of PTB (OR = 1.06; 95%CI = 1.01-1.10 for highest versus lowest category of arsenic), with significant heterogeneity across the studies (I2 = 84.8%, P = 0.001). This finding was supported by cohort studies (OR = 1.05; 95%CI = 1.01-1.10). This meta-analysis proposes that higher arsenic exposure in drinking water may be a risk factor for PTB.

9.
Pathol Res Pract ; 255: 155137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324962

RESUMO

Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos
10.
Tissue Cell ; 87: 102320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342071

RESUMO

Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Geleia de Wharton , Humanos , AVC Isquêmico/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo
11.
Microsc Res Tech ; 87(3): 411-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877737

RESUMO

This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.


Assuntos
Anti-Infecciosos , Ocimum basilicum , Óleos Voláteis , Sesquiterpenos Policíclicos , Humanos , Ocimum basilicum/química , Preparações de Ação Retardada , Células HEK293 , Microfluídica , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
12.
Pathol Res Pract ; 253: 154995, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113765

RESUMO

Breast cancer (BC) is the most prevalent aggressive malignant tumor in women worldwide and develops from breast tissue. Although cutting-edge treatment methods have been used and current mortality rates have decreased, BC control is still not satisfactory. Clarifying the underlying molecular mechanisms will help clinical options. Extracellular vesicles known as exosomes mediate cellular communication by delivering a variety of biomolecules, including proteins, oncogenes, oncomiRs, and even pharmacological substances. These transferable bioactive molecules can alter the transcriptome of target cells and affect signaling pathways that are related to tumors. Numerous studies have linked exosomes to BC biology, including therapeutic resistance and the local microenvironment. Exosomes' roles in tumor treatment resistance, invasion, and BC metastasis are the main topics of discussion in this review.


Assuntos
Neoplasias da Mama , Exossomos , Vesículas Extracelulares , Feminino , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Exossomos/metabolismo , Transdução de Sinais , Comunicação Celular , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
13.
Pathol Res Pract ; 254: 155135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295461

RESUMO

The term acute respiratory disease encompasses a wide range of acute lung diseases, which in recent years have been ranked among the top three deadly diseases in the world. Since conventional treatment methods, including the use of anti-inflammatory drugs, have had no significant effect on the treatment process of these diseases, the attention of the medical community has been drawn to alternative methods. Mesenchymal stem cells (MSC) are multipotential stem/progenitor cells that have extensive immunomodulatory and anti-inflammatory properties and also play a critical role in the microenvironment of injured tissue. MSC secretomes (containing large extracellular vesicles, microvesicles, and exosomes) are a newly introduced option for cell-free therapies that can circumvent the hurdles of cell-based therapies while maintaining the therapeutic role of MSC themselves. The therapeutic capabilities of MSCs have been showed in many acute respiratory diseases, including chronic respiratory disease (CRD), novel coronavirus 2019 (COVID -19), and pneumonia. MSCs offer novel therapeutic approaches for chronic and acute lung diseases due to their anti-inflammatory and immunomodulatory properties. In this review, we summarize the current evidence on the efficacy and safety of MSC-derived products in preclinical models of lung diseases and highlight the biologically active compounds present in the MSC secretome and their mechanisms involved in anti-inflammatory activity and tissue regeneration.


Assuntos
Exossomos , Pneumopatias , Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Anti-Inflamatórios
14.
Pathol Res Pract ; 254: 155072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228039

RESUMO

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression. They are involved in a wide range of biological processes, including development, differentiation, cell cycle regulation, and response to stress. Numerous studies have demonstrated that miRNAs are present in different bodily fluids, which could serve as an important biomarker. The advancement of techniques and strategies for the identification of cancer-associated miRNAs in human specimens offers a novel opportunity to diagnose cancer in early stages, predict patient prognosis and evaluate response to treatment. Isothermal techniques including loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), or recombinase polymerase amplification (RPA) offer simplicity, efficiency, and rapidity in miRNA detection processes. In contrast to traditional PCR (polymerase chain reaction), these techniques analysis and quantify miRNA molecules in specimens using a single constant temperature. In this comprehensive review, we summarized the recent advances in cancer-related miRNA detection via highly sensitive isothermal amplification methods by more focusing on the involved mechanism.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética
15.
Pathol Res Pract ; 254: 155084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244434

RESUMO

This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Progressão da Doença
16.
Front Chem ; 12: 1342784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435668

RESUMO

In this study, choline chloride/urea was used as a green deep eutectic solvent in the three-component reaction of hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrazole derivatives, and in the four-component reaction of methyl/ethyl acetoacetate, hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrano[2,3-c]pyrazole derivatives. Elemental analysis, 1H, and 13C NMR spectroscopy were used to confirm the structure of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives. The antimicrobial effects of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives were investigated. In antimicrobial tests, instructions from clinical and laboratory standards institutes were used. Antimicrobial study was done on pathogenic gram-positive and gram-negative species, and specialized aquatic strains and fungal species. Using choline chloride/urea, novel pyrazole derivatives and pyrano[2,3-c]pyrazole derivatives were synthesized, and other derivatives were synthesized with higher efficiency in less time than some previously reported methods. MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) obtained for derivatives were higher than some antibiotic drugs. Synthesis and reports of new derivatives of pyrazole and pyrano[2,3-c]pyrazole, and investigation and reports of their antimicrobial properties on gram-positive, gram-negative, and specialized aquatic and fungal species are among the novel and important findings of this study.

17.
Crit Rev Anal Chem ; : 1-14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165810

RESUMO

The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.

18.
Med Oncol ; 41(1): 41, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165473

RESUMO

Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Neoplasias , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2 , Terapia Combinada , Neoplasias/tratamento farmacológico , Carcinogênese
19.
Micron ; 179: 103595, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38341939

RESUMO

The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/farmacologia , Antibacterianos/farmacologia , Prata/farmacologia , Cobre/farmacologia , Porosidade
20.
Int J Biol Macromol ; 260(Pt 1): 129367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218269

RESUMO

The study focused on creating a novel and environmentally friendly nanocatalyst using cellulose (Cell), ß-Cyclodextrin (BCD), graphene oxide (GO), Cu2O, and Fe3O4.The nanocatalyst was prepared by embedding GO and Cu2O into Cell-BCD hydrogel, followed by the in-situ preparation of Fe3O4 magnetic nanoparticles to magnetize the nanocomposite. The effectiveness of this nanocatalyst was evaluated in the one-pot, three-component symmetric Hantzsch reaction for synthesizing 1,4-dihydropyridine derivatives with high yield under mild conditions. This novel nanocatalyst has the potential for broad application in various organic transformations due to its effective catalytic activity, eco-friendly nature, and ease of recovery.


Assuntos
Ciclodextrinas , Grafite , Nanocompostos , Nanopartículas , Hidrogéis , Fenômenos Magnéticos , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA