Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Environ Manage ; 328: 116963, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516710

RESUMO

Since the green revolution, excessive utilization of chemical fertilizers has become prevalent due to concerns about the integrity of food production for the growing population. This indiscriminate use harms the fertility of the soil, especially in sandy soils where nutrient leaching, particularly nitrogen, results in yield losses as well as environmental and health problems. A pot experiment was carried out at Gomal University, Pakistan, in March 2022 to assess the nitrogen use efficiency, nitrogen uptake, and yield of okra. There were nine treatments with four replicates and the treatment combinations were established using a completely randomized design (CRD). Urea coated with agrotain (urease inhibitor) was applied each at 120 and 84 kg N ha-1 in 2 or 3 splits. Urea at 84 kg N ha-1 was also used in combination with Farmyard manure (FYM) and compared against the control (100% recommended urea). Obtained results showed that inhibitor-treated urea significantly increased soil concentrations of NO3-N and NH4-N over non-inhibitor-treated urea. The highest NO3-N was recorded where urea alone and urea treated with 3 L (3 L) agrotain was applied to 100%. The highest ammonical-N was recorded, where 70% urea treated with 3 L agrotain was applied. Urea, in combination with FYM, significantly increased the organic matter. Electrical conductivity in extract (ECe), and pH of the soil. The improvement in yield with inhibitor was at par with 70% and 100% urea. The highest improvement of 16% in fruit yield and 7.29% nitrogen use efficiency was obtained in the treatment receiving 120 kg N ha-1 treated with 3 L agrotain compared with non-inhibitor urea. The 2nd highest improvement of 10% in fruit yield on account of increased fruit length, stem diameter, and number of fruits, and 5.97% nitrogen use efficiency (NUE) was obtained in treatment receiving 120 kg N ha-1 in combination with FYM in comparison to control. These results suggested that the use of N inhibitor significantly increased the okra fruit yield on account of enhancing ammonical-N and increased N use efficiency.


Assuntos
Abelmoschus , Solo , Humanos , Agricultura/métodos , Esterco , Nitrogênio/análise , Ureia , Produtos Agrícolas , Fertilizantes
2.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234810

RESUMO

Inflammation is the main cause of several autoimmune diseases, including type I diabetes, rheumatoid arthritis, bullous pemphigoid, paraneoplastic pemphigoid, and multiple sclerosis. Currently, there is an urgent demand for the discovery of novel anti-inflammatory drugs with potent activity but also safe for long-term application. Toward this aim, the present study reported the design, synthesis, and characterization of a set of novel 1,3-disubstituted-2-thiohydantoins derivatives. The anti-inflammatory activity of synthesized compounds was assessed against murine leukemia cell line (RAW264.7) by evaluating the cytotoxicity activity and their potency to prevent nitric oxide (NO) production. The results revealed that the synthesized compounds possess a considerable cytotoxic activity together with the ability to reduce the NO production in murine leukemia cell line (RAW264.7). Among synthesized compounds, compound 7 exhibited the most potent cytotoxic activity with IC50 of 197.68 µg/mL, compared to celecoxib drug (IC50 value 251.2 µg/mL), and demonstrated a significant ability to diminish the NO production (six-fold reduction). Exploring the mode of action responsible for the anti-inflammatory activity revealed that compound 7 displays a significant and dose-dependent inhibitory effect on the expression of pro-inflammatory cytokines IL-1ß. Furthermore, compound 7 demonstrated the ability to significantly reduce the expression of the inflammatory cytokines IL-6 and TNF-α at 50 µg/mL, as compared to Celecoxib. Finally, detailed molecular modelling studies indicated that compound 7 exhibits a substantial binding affinity toward the binding pocket of the cyclooxygenase 2 enzyme. Taken together, our study reveals that 1,3-disubstituted-2-thiohydantoin could be considered as a promising scaffold for the development of potent anti-inflammatory agents.


Assuntos
Leucemia , Tioidantoínas , Animais , Anti-Inflamatórios/química , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-6 , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
3.
J Mol Liq ; 363: 119878, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880006

RESUMO

Hydrocortisone (termed as D1) and dexamethasone (termed as D2) are corticosteroids currently used to treat COVID-19. COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exploring additional chemical properties of drugs used in the treatment protocols for COVID-19 could help scientists alike improve these treatment protocols and potentially even the vaccines (i.e., Janssen, Moderna, AstraZeneca, Pfizer-BioNTech). In this work, the charge-transfer (CT) properties of these two corticosteroids (D1 and D2) with two universal acceptors: 7,8,8-tetracyanoquinodimethane (termed as TCNQ) and fluoranil (termed as TFQ) in five different solvents were investigated. The examined solvents were MeOH, EtOH, MeCN, CH2Cl2, and CHCl3. The CT interactions formed stable corticosteroid CT complexes in all examined solvents. Several spectroscopic parameters were derived, and the oscillator strength (f) and transition dipole moment (µe.g. ) values revealed that the interaction between the investigated corticosteroids with TCNQ acceptor is much stronger than their interaction with TFQ acceptor. The CT interactions were proposed to process via n â†’ π* transition.

4.
Curr Probl Cardiol ; 49(1 Pt B): 102112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37774899

RESUMO

Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.


Assuntos
Doenças Cardiovasculares , Canal de Cátion TRPC6 , Humanos , Pulmão/metabolismo , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo
5.
Int J Biol Macromol ; 268(Pt 2): 131947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685542

RESUMO

Trimethoprim (TMP), an antibiotic contaminant, can be effectively removed from water by using the innovative magnetic metal-organic framework (MOF) composite sponge Fe3O4@Rh-MOF@PIC, which is shown in this study. The composite is made up of magnetite (Fe3O4) nanoparticles and a rhodium MOF embedded in a poly(itaconic acid) grafted chitosan matrix. The structure and characteristics of the synthesized material were confirmed by thorough characterization employing SEM, FTIR, XPS, XRD, and BET techniques. Notably, the composite shows a high magnetic saturation of 64 emu g-1, which makes magnetic separation easier, according to vibrating sample magnetometry. Moreover, BET analysis revealed that the Fe3O4@Rh-MOF@PIC sponge had an incredibly high surface area of 1236.48 m2/g. Its outstanding efficacy was confirmed by batch adsorption tests, which produced a maximum adsorption capacity of 391.9 mg/g for the elimination of TMP. Due to its high porosity, magnetic characteristics, and superior trimethoprim uptake, this magnetic MOF composite sponge is a promising adsorbent for effective removal of antibiotics from contaminated water sources. An adsorption energy of 24.5 kJ/mol was found by batch investigations on the Fe3O4@Rh-MOF@PIC composite sponge for trimethoprim (TMP) adsorption. The fact that this value was up 8 kJ/mol suggests that the main mechanism controlling TMP absorption onto the sponge adsorbent is chemisorption. Chemisorption requires creating strong chemical interactions between adsorbate and adsorbent surface groups, unlike weaker physisorption. The magnetic composite sponge exhibited strong removal capabilities and high adsorption capacities for the antibiotic pollutant. The Fe3O4@Rh-MOF@PIC composite sponge also showed magnetism, which allowed for easy magnetic separation after adsorption. Over the course of 6 cycles, it showed outstanding reusability, and XRD confirmed that its composition was stable. The high surface area MOF's pore filling, hydrogen bonding, π-π stacking, and electrostatic interactions were the main trimethoprim adsorption mechanisms. This magnetic composite is feasible and effective for removing antibiotics from water because of its separability, reusability, and synergistic adsorption mechanisms via electrostatics, H-bonding, and π-interactions. The adsorption results were optimized using Box Behnken-design (BBD).


Assuntos
Quitosana , Estruturas Metalorgânicas , Trimetoprima , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Estruturas Metalorgânicas/química , Trimetoprima/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Purificação da Água/métodos , Águas Residuárias/química , Termodinâmica , Cinética , Succinatos
6.
Int J Biol Macromol ; 224: 20-31, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481331

RESUMO

Acid phosphatase (ACP) is a key enzyme in the regulation of phosphate feeding in plants. In this study, a new ACP from C. oxyacantha was isolated to homogeneity and biochemically described for the first time. Specific activity (283 nkat/mg) was found after 2573 times purification fold and (17 %) yield. Using SDS-PAGE under denaturing and nondenaturing conditions, ACP was isolated as a monomer with a molecular weight of 36 kDa. LC-MS/MS confirmed the presence of this band, suggesting that C. oxycantha ACP is a monomer. The enzyme could also hydrolyze orthophosphate monoester with an optimal pH of 5.0 and a temperature of 50 °C. Thermodynamic parameters were also determined (Ea, ΔH°, ΔG°, and ΔS°). ACP activity was further studied in the presence of cysteine, DTT, SDS, EDTA, ß-ME, Triton-X-100 H2O2, and PMSF. The enzyme had a Km of 0.167 mM and an Ea of 9 kcal/mol for p-nitrophenyl phosphate. The biochemical properties of the C. oxyacantha enzyme distinguish it from other plant acid phosphatases and give a basic understanding of ACP in C. oxyacantha. The results of this investigation also advance our knowledge about the biochemical significance of ACP in C. oxyacantha. Thermal stability over a wide pH and temperature range make it more suitable for use in harsh industrial environments. However, further structural and physiological studies are anticipated to completely comprehend its important aspects in oxyacantha species.


Assuntos
Fosfatase Ácida , Plântula , Fosfatase Ácida/química , Plântula/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Termodinâmica , Temperatura , Fosfatos , Cinética , Peso Molecular , Especificidade por Substrato
7.
Curr Probl Cardiol ; 48(9): 101821, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211304

RESUMO

The achievement of genome-wide association studies (GWAS) has rapidly progressed our understanding of the etiology of coronary artery disease (CAD). It unlocks new strategies to strengthen the stalling of CAD drug development. In this review, we highlighted the recent drawbacks, mainly pointing out those involved in identifying causal genes and interpreting the connections between disease pathology and risk variants. We also benchmark the novel insights into the biological mechanism behind the disease primarily based on outcomes of GWAS. Furthermore, we also shed light on the successful discovery of novel treatment targets by introducing various layers of "omics" data and applying systems genetics strategies. Lastly, we discuss in-depth the significance of precision medicine that is helpful to improve through GWAS analysis in cardiovascular research.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Fatores de Risco , Medicina de Precisão
8.
Curr Probl Cardiol ; 48(7): 101664, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841315

RESUMO

Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardio protective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Insuficiência Cardíaca , Humanos , Doenças Cardiovasculares/epidemiologia , Frutas , Anti-Inflamatórios
9.
Heliyon ; 9(3): e14451, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950602

RESUMO

The construction and building industry in the modern world heavily relies on advanced techniques and materials such as polymers. However, with the world's population alarmingly increasing, contributing to the greenhouse effect, and severe weather conditions amplifying, it has become crucial to reduce the heat effects in both new and old buildings. To achieve this, 50-70% more energy is necessary, which highlights the importance of energy-efficient construction practices and materials. Consequently, a comprehensive study was conducted to evaluate the efficacy of Polyurethane in indoor environments and energy conservation. Current study was performed due to an innovative application of insulation materials as to reduce the heat and energy costs in construction works. Thermal conductivity at mean temperature 35 °C was found 0.0272 (W/m K) with maximum in burnt clay brick (1.43 W/m K) by using hotplate apparatus. Specific heat was also found less 0.85 (KJ/Kg K) at density 32 kg/m3 while results were at par in reinforcement cement concrete and burnt clay brick 0.91, 0.91 (KJ/Kg K) respectively. Similarly, heat transmittance values of different roof sections by using polyurethane insulation showing satisfaction the ECBC in Buildings deviating standard U-value 1.20% to 0.418 (W/m2 K) with its excellent performance. Polyurethane treatments have been found to exert a significant impact on the computation of thermal resistance and overall heat transfer coefficients. In contrast, non-insulated treatments yielded inconclusive results with little to no significance. This highlights the importance of insulation materials in energy-efficient construction practices. Energy consumption in winter and summer also has shown the significant impact by using polyurethane application with cumulative saving of 60-62% electricity. Economic Benefit of polyurethane in RCC and Conventional buildings describes positive and highly significant impact in present study. Application of polyurethane in new and old buildings ultimate enhanced the better quality of life and living standards from people of applied countries and is strongly recommended for future prospects and endeavors as Eco-friendly and energy efficient for sustainable development.

10.
ACS Omega ; 8(22): 19892-19899, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305269

RESUMO

In this work, the new compositions of FeCoNiAlMn1-xCrx, (0.0 ≤ x ≤ 1.0), a high-entropy alloy powder (HEAP), are prepared by mechanical alloying (MA). The influence of Cr doping on the phase structure, microstructure, and magnetic properties is thoroughly investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry. It is found that this alloy has formed a simple body-centered cubic structure with a minute face-centered cubic structure for Mn to Cr replacement with heat treatment. The lattice parameter, average crystallite size, and grain size decrease by replacing Cr with Mn. The SEM analysis of FeCoNiAlMn showed no grain boundary formation, depicting a single-phase microstructure after MA, similar to XRD. The saturation magnetization first increases (68 emu/g) up to x = 0.6 and then decreases with complete substitution of Cr. Magnetic properties are related to crystallite size. FeCoNiAlMn0.4Cr0.6 HEAP has shown optimum results with better saturation magnetization and coercivity as a soft magnet.

11.
Front Plant Sci ; 14: 1163528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360703

RESUMO

Manganese (Mn) is an essential micronutrient in plants, and it is necessary for hydrolysis in photosystem II, chlorophyll biosynthesis, and also chloroplast breakdown. Limited Mn availability in light soil resulted in interveinal chlorosis, poor root development, and the development of fewer tillers, particularly staple cereals including wheat, while foliar Mn fertilizers were found efficient in improving crop yield as well as Mn use efficiency. In the above context, a study was conducted in consecutive two wheat growing seasons for screening of the most effective and economical Mn treatment for improving the yield and Mn uptake in wheat and to compare the relative effectiveness of MnCO3 against the recommended dose of MnSO4 for wheat. To fulfill the aims of the study, three manganese products, namely, 1) manganese carbonate MnCO3 (26% Mn w/w and 3.3% N w/w), 2) 0.5% MnSO4·H2O (30.5% Mn), and 3) Mn-EDTA solution (12% Mn), were used as experimental treatments. Treatments and their combinations were as follows: two levels of MnCO3 (26% Mn) @ 750 and 1,250 ml ha-1 were applied at the two stages (i.e., 25-30 and 35-40 days after sowing) of wheat, and three sprays each of 0.5% MnSO4 (30.5% Mn) and Mn-EDTA (12% Mn) solution were applied in other plots. The 2-year study showed that Mn application significantly increased the plant height, productive tillers plant-1, and 1,000 grain weight irrespective of fertilizer source. The results of MnSO4 for grain yield wheat as well as uptake of Mn were statistically at par with both levels (750 and 1,250 ml ha-1) of MnCO3 with two sprays at two stages of wheat. However, the application of Mn in the form of 0.5% MnSO4·H2O (30.5% Mn) was found more economical than MnCO3, while the mobilization efficiency index (1.56) was found maximum when Mn was applied in MnCO3 with two sprays (750 and 1,250 ml ha-1) in the two stages of wheat. Thus, the present study revealed that MnCO3 can be used as an alternative to MnSO4 to enhance the yield and Mn uptake of wheat.

12.
Toxics ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850966

RESUMO

The present study analyzes the determinants and patterns of the regional, local, and differential plant diversity of two different sites with similar climatic but varied edaphic factors. This research was undertaken to study the plant diversity and population structure as a consequence of variation in the soil quality between two biotopes: Guru Ghasidas Vishwavidyalaya in Koni (site-I) and National Thermal Power Corporation in Sipat (site-II). The soil of site-I was found to be fertile and showed rich vegetation. On the other hand, the soil of site II was found to be contaminated with heavy metals, which impacts the flora of the region. The ecology of both sites was studied, and their quantitative and qualitative aspects were compared and contrasted. The abundance, density, and richness of the plants in site II were fairly lower than in site-I, which was confirmed by utilizing Simpson's and Shannon's diversity indices. Many of the species collected from site II were heavy metal accumulators and could also serve as indicators of heavy metal toxicity.

13.
ACS Omega ; 8(33): 29959-29965, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636967

RESUMO

Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.

14.
ACS Omega ; 8(25): 22955-22963, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396221

RESUMO

Preparation of a lead-free system (Ba0.8Ca0.2)TiO3-xBi(Mg0.5Ti0.5)O3 (BCT-BMT) with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 was carried out using a solid-state reaction technique. X-ray (XRD) diffraction analysis confirmed a tetragonal structure for x = 0, which shifted to cubic (pseudocubic) at x ≥ 0.1. From Rietveld refinement, a single phase with a tetragonal symmetry model (P4mm) was observed for x = 0, and however, for sample x = 0.1 and sample x = 0.5, the data are modeled to cubic (Pm3m). Composition x = 0 showed a prominent Curie peak, typical of ordinary ferroelectrics with a Curie temperature (Tc) ∼130 °C, modified to a typical relaxor dielectric at x ≥ 0.1. However, samples at x = 0.2-0.5 displayed a single semicircle attributed to the bulk response of the material, whereas a slightly depressed second arc appeared for x = 0.5 at 600 °C, indicating a slight contribution to the electrical properties, ascribed to the grain boundary of the material. Finally, the dc resistivity increased with the increase of the BMT content and the solid solution increased the activation energy from 0.58 eV at x = 0 to 0.99 eV for x = 0.5. Adding the BMT content eliminated the ferroelectric behavior at compositions x ≥ 0.1 and led to a linear dielectric response and electrostrictive behavior with a maximum strain of 0.12% for x = 0.2.

15.
RSC Adv ; 13(33): 22958-22965, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520091

RESUMO

The non-toxic nature of lead-free materials with cubic perovskite structure has attracted the researcher's attention, and huge work is ongoing for the search of such materials. Furthermore, due to demand for their utilization in diverse applications, such as photovoltaic and optoelectronics, these inorganic-halide materials have become more enchanting for engineers. In the present work, all the key properties, including structural, electronic, optical, and mechanical, of rubidium based RbVX3 (where X is chlorine, bromine, and iodine) materials were extensively studied via first-principle density functional theory (DFT). The study reveals the half-metallic nature of the currently studied materials. For the mechanical stability of RbVX3 compounds, all three independent elastic coefficients (Cij) were determined, from which it was concluded that these materials are mechanically stable. Moreover, from the Poison and Pugh's ratios, it was found that the RbVCl3 and RbVBr3 materials have ductile nature, while RbVI3 has brittle nature upon the applied stress.

16.
Curr Probl Cardiol ; 48(1): 101415, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155199

RESUMO

Coronary artery disease (CAD) is a cardiovascular disease of the blood vessels that makes vessels, narrow and hardened and difficult to supply blood to the heart. The epidemiology of CAD disease is a common clinical syndrome of a global health priority and the burden is increasing at an alarming rate worldwide. The prevalence of CAD not only increases mortality, morbidity and worsens the patient quality of life but also puts a huge burden on the overall healthcare system. The novel risk factors include: cholesterol level, cigarette smoking, diabetics, obesity, and hypertension, respectively are the causative agents of CAD. Furthermore, the etiology of CAD is also a very complex process and several interrelated etiological factors are involved in the pathogenesis of CAD. The signs and symptoms of CAD appear like angina, heart failure, and dyspnea, myocardial infarction, and arrhythmia, respectively. The management and diagnosis of CAD include different types of medications that are used nowadays for the treatment of this disease. The highlights of the present review focused on stent technology and its useful applications. Finally, we also addressed the benefits of the stent, and its potential complications, effectiveness, indication, and contraindication that play a significant role in the recovery of CAD disease.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/etiologia , Qualidade de Vida , Stents , Fatores de Risco , Tecnologia
17.
Front Plant Sci ; 14: 1154051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063224

RESUMO

Abiotic stress, especially salt stress, is one of the major barriers to crop production worldwide. Crops like onion that belong to the glycophytic group are more sensitive to salinity stress. A huge study regarding the influence of salinity stress on the growth and development of crops has already been done and is still ongoing. One of the major targets of the research is to develop genotypes that have enhanced performance under stress environments. The world needs more of these types of genotypes to combat the ever-growing salt-stressed soils. Therefore, a number of germplasm were studied during the 2019-2020 and 2020-2021 seasons under different salt concentrations to identify tolerant genotypes as well as to study the plants' responses at different growth stages against elevated salinity levels. A 2-year study was conducted where germination potential was evaluated in the first year and carried out in petri dish culture of seeds, followed by plastic pot culture for plant establishment and bulb development evaluation during the second year. Four different saline water solutions having different salt concentrations (0, 8, 10, and 12 dS m-1) were applied to the petri dishes and pots as the source of water for plants in both seasons. Results indicated that a significant reduction in plants' performance occurs under higher salinity levels. Salt concentration had an adverse impact on germination, leaf development and growth, the height of plants, bulb size and shape, and the bulb weight of onion. All the growth phases of onion are sensitive to elevated concentrations. Variable performances were observed in the genotypes under stress conditions, and a few genotypes (Ac Bog 409, Ac Bog 414, Ac Bog 424, Ac Bog 430, Ac Bog 417, Ac Bog 419, Ac Bog 420, Ac Bog 422, and Ac Bog 425) having some sort of tolerance to salt stress were identified, which might be recommended for mass production. Tolerance indices could successfully be applied in selecting the salt-tolerant genotypes. Thus, the present findings and the identified genotypes could be further utilized in salt stress improvement research on onion.

18.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447080

RESUMO

In underdeveloped nations where low-input agriculture is practiced, low phosphorus (LP) in the soil reduces the production of maize. In the present study, a total of 550 inbred maize lines were assessed for seedling traits under LP (2.5 × 10-6 mol L-1 of KH2PO4) and NP (2.5 × 10-4 mol L-1 of KH2PO4) hydroponic conditions. The purpose of this study was to quantify the amount of variation present in the measured traits, estimate the genetic involvement of these characteristics, examine the phenotypic correlation coefficients between traits, and to integrate this information to prepare a multi-trait selection index for LP tolerance in maize. A great deal of variability in the maize genotype panel was confirmed by descriptive statistics and analysis of variance (ANOVA). Estimated broad-sense heritability (h2) ranged from 0.7 to 0.91, indicating intermediate to high heritability values for the measured traits. A substantial connection between MSL and other root traits suggested that the direct selection of MSL (maximum shoot length) could be beneficial for the enhancement of other traits. The principal component analysis (PCA) of the first two main component axes explained approximately 81.27% of the variation between lines for the eight maize seedling variables. TDM (total dry matter), SDW (shoot dry weight), RDW (root dry weight), SFW (shoot fresh weight), RFW (root fresh weight), MRL (maximum root length), and MSL measurements accounted for the majority of the first principal component (59.35%). The multi-trait indices were calculated based on PCA using all the measured traits, and 30 genotypes were selected. These selected lines might be considered as the potential source for the improvement of LP tolerance in maize.

19.
Life (Basel) ; 12(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35454975

RESUMO

For a sustainable and profitable agriculture production system, balanced and integrated use of nutrients is a key strategy. In addition, partial replacement of chemical fertilizers with organics ones reduces both environmental concerns and economic costs and provides greater soil health benefits. With this hypothesis, an experiment was conducted to assess the yield and economic benefits of a rice-wheat cropping system (RWCS) as influenced by the joint application of sewage sludge (SSL) and fertilizer. The treatments comprised: without fertilizer or SSL; 100% recommended dose of fertilizers (RDF); 100% RDF + 20 Mg ha-1 SSL; 100% RDF + 30 Mg ha-1 SSL; 50% RDF + 20 Mg ha-1 SSL; 60% RDF + 20 Mg ha-1 SSL; 70% RDF + 20 Mg ha-1 SSL; 50% RDF + 30 Mg ha-1 SSL; 60% RDF + 30 Mg ha-1 SSL and 70% RDF + 30 Mg ha-1 SSL. The experiment was laid out in a randomized block design with three replications. The result of our study indicate that the highest percent increase in mean plant height i.e., ~14.85 and ~13.90, and grain yield i.e., ~8.10 and ~18.90 for rice and wheat, respectively, were recorded under 100% RDF + 30 Mg SSL ha-1 treatment compared to 100% RDF, while 70% RDF + 20 Mg ha-1 SSL produced a statistically equivalent grain yield of 100% RDF in RWCS. The application of 20 and 30 Mg SSL ha-1 along with recommended or reduced fertilizer dose, significantly increased the heavy metal content in plant and soil systems above that of 100% RDF, but this enhancement was found within permissible limits. Moreover, the reduced use of SSL i.e., 20 Mg SSL ha-1, resulted in lower heavy metal content in grain and soil than did the 30 Mg ha-1 SSL treatment, but significantly higher than in the absolute control or 100% RDF treatment. In summary, the use of 20 Mg ha-1 SSL along with 70% RDF provided a safer, profitable and sustainable option in a rice-wheat cropping system in the middle Ganegatic alluvial plain.

20.
Plants (Basel) ; 11(11)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684294

RESUMO

In order to develop high-yielding genotypes of adapted maize, multilocation trials of maize were performed including forty-five maize hybrids exploiting genetic variability, trait associations, and diversity. The experiments were laid out in an RCB design and data were recorded on eight yield and yield-contributing traits, viz., days to anthesis (AD), days to silking (SD), anthesis-silking interval (ASI), plant height (PH), ear height (EH), kernels per ear (KPE), thousand-kernel weight (TKW), and grain yield (GY). An analysis of variance (ANOVA) showed significant variation present among the different traits under study. The phenotypic coefficient of variance (PCV) showed a higher value than the genotypic coefficient of variance (GCV), indicating the environmental influence on the expression of the traits. High heritability coupled with high genetic advance was found for these traits, indicative of additive gene action. The trait associations showed that genotypic correlation was higher than phenotypic correlation. Based on genetic diversity, the total genotypes were divided into four clusters, and the maximum number of 16 genotypes was found in cluster IV. Among the eight yield and yield-contributing traits, PH, ASI, EH, and TKW were the important traits for variability creation and were mostly responsible for yield. Genotypes G5, G8, G27, G29, and G42 were in the top ranks based on grain yield over locations, while a few others showed region-centric performances; all these genotypes can be recommended upon validation for commercial release. The present findings show the existence of proper genetic variability and divergence among traits, and the identified traits can be used in a maize improvement program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA