Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Cancer ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935523

RESUMO

Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.

2.
J Transl Med ; 22(1): 676, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044184

RESUMO

BACKGROUND: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS: In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS: Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS: These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.


Assuntos
Neoplasias da Mama , Ácido Graxo Sintase Tipo I , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/enzimologia , Feminino , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Lipidômica , Metabolômica , L-Lactato Desidrogenase
3.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891888

RESUMO

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p). The circRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) network analysis showed that the candidate miRNAs were connected to well-known colitis-associated CRC ACVR2A, SOCS1, IGF2BP1, FAM126A, and CCDC85C mRNAs, and circ-SHPRH circRNA. SST and SCARA5 genes regulated by hsa-let-7d-5p, hsa-miR-145-5p, and hsa-miR-331-3p were linked to a poor survival prognosis in a CRC patient dataset from The Cancer Genome Atlas (TCGA). Lastly, our mRNA and miRNA candidates were validated by comparing their expression to differentially expressed mRNAs and miRNAs from colitis-associated CRC tissue databases. A high level of hsa-miR-331-3p and a parallel reduction in SOCS1 mRNA were found in tissue and serum. We propose hsa-miR-331-3p and possibly hsa-let-7d-5p as novel serum biomarkers for predicting UC progression to CRC. More clinical sample analysis is required for further validation.


Assuntos
Biomarcadores Tumorais , Colite Ulcerativa , Neoplasias Colorretais , Perfilação da Expressão Gênica , MicroRNAs , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/análise , MicroRNAs/metabolismo
5.
Front Oncol ; 14: 1295772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690171

RESUMO

Background: Hormone receptor-positive tumors are unlikely to exhibit a complete pathological tumor response. The association of CDK 4/6 inhibitor plus hormone therapy has changed this perspective. Case presentation: In this study, we retrospectively reviewed the charts of patients with a diagnosis of luminal A/B advanced/metastatic tumors treated with a CDK 4/6 inhibitor-based therapy. In this part of the study, we present clinical and ultrasound evaluation. Eight female patients were considered eligible for the study aims. Three complete and five partial responses were reported, including a clinical tumor response of 50% or more in five out of nine assessed lesions (55%). All patients showed a response on ultrasound. The mean lesion size measured by ultrasound was 27.1 ± 15.02 mm (range, 6-47 mm) at the baseline; 16.08 ± 14.6 mm (range, 0-40 mm) after 4 months (T1); and 11.7 ± 12.9 mm (range, 0-30 mm) at the 6 months follow-up (T2). Two patients underwent surgery. The radiological complete response found confirmation in a pathological complete response, while the partial response matched a moderate residual disease. Conclusion: The evaluation of breast cancer by ultrasound is basically informative of response and may be an easy and practical tool to monitor advanced tumors, especially in advanced/unfit patients who are reluctant to invasive exams.

6.
Ageing Res Rev ; 95: 102251, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38428821

RESUMO

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Assuntos
Doenças Neurodegenerativas , Morte Celular Regulada , Humanos , Envelhecimento/fisiologia , Apoptose/fisiologia , Longevidade
7.
Biomed Opt Express ; 15(3): 1976-1994, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495717

RESUMO

In this work, a 3D-printed plasmonic chip based on a silver-gold bilayer was developed in order to enhance the optical response of the surface plasmon resonance (SPR) probe. More specifically, numerical and experimental results were obtained on the 3D-printed SPR platform based on a silver-gold bilayer. Then, the optimized probe's gold plasmonic interface was functionalized with a specific antibody directed against the p27Kip1 protein (p27), an important cell cycle regulator. The 3D-printed plasmonic biosensor was tested for p27 detection with good selectivity and a detection limit of 55 pM. The biosensor system demonstrated performance similar to commercially available ELISA (enzyme-linked immunoassay) kits, with several advantages, such as a wide detection range and a modular and simple-based architecture. The proposed biosensing technology offers flexible deployment options that are useful in disposable, low-cost, small-size, and simple-to-use biochips, envisaging future applications in experimental and biomedical research.

8.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730609

RESUMO

Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.

9.
J Exp Clin Cancer Res ; 43(1): 165, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877560

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS: We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS: We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS: Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.


Assuntos
Budesonida , Proliferação de Células , Metabolismo Energético , Neoplasias Pancreáticas , Humanos , Budesonida/farmacologia , Budesonida/uso terapêutico , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Metabolismo Energético/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos
12.
ACS Pharmacol Transl Sci ; 7(7): 2125-2142, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022363

RESUMO

Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.

13.
Eur J Med Chem ; 276: 116669, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053189

RESUMO

The present study describes a small library of peptides derived from a potent and selective CXCR4 antagonist (3), wherein the native disulfide bond is replaced using a side-chain to tail macrolactamization technique to vary ring size and amino acid composition. The peptides were preliminary assessed for their ability to interfere with the interaction between the receptor and anti-CXCR4 PE-conjugated antibody clone 12G5. Two promising candidates (13 and 17) were identified and further evaluated in a125I-CXCL12 competition binding assay, exhibiting IC50 in the low-nanomolar range. Furthermore, both candidates displayed high selectivity towards CXCR4 with respect to the cognate receptor CXCR7, ability to block CXCL12-dependent cancer cell migration, and receptor internalization, albeit at a higher concentration compared to 3. Molecular modeling studies on 13 and 17 produced a theoretical model that may serve as a guide for future modifications, aiding in the development of analogs with improved affinity. Finally, the study provides valuable insights into developing therapeutic agents targeting CXCR4-mediated processes, demonstrating the adaptability of our lead peptide 3 to alternative cyclization approaches and offering prospects for comprehensive investigations into the receptor region's interaction with its C-terminal region.


Assuntos
Dissulfetos , Peptídeos , Receptores CXCR4 , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Humanos , Sítios de Ligação/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Dissulfetos/química , Dissulfetos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Lactamas/química , Lactamas/farmacologia , Lactamas/síntese química , Movimento Celular/efeitos dos fármacos , Modelos Moleculares , Linhagem Celular Tumoral
14.
Clin Cancer Res ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115426

RESUMO

PURPOSE: Therapy resistance is a major clinical hurdle in bone cancer treatment and seems to be largely driven by poorly understood microenvironmental factors. Recent evidence suggests a critical role for a unique subpopulation of mesenchymal stem cells with inflammatory features (iMSCs), though their origin and function remained unexplored. We demonstrate that cancer-secreted extracellular vesicles (EVs) trigger the development of iMSCs, which hinder therapy response in vivo, and set out to identify strategies to counteract their function. EXPERIMENTAL DESIGN: The role of iMSCs in therapy resistance was evaluated in an orthotopic xenograft mouse model of osteosarcoma. EV-induced alterations of the MSC transcriptome were analyzed and compared with scRNA-seq data of osteosarcoma and multiple myeloma patient biopsies. Functional assays identified EV components driving iMSC development. We assessed the efficacy of clinical drugs in blocking iMSC-induced resistance in vivo. RESULTS: We found that iMSCs are induced by interaction with cancer EVs and completely abrogate the antimetastatic effect of TGFb signaling inhibition. Importantly, EV-induced iMSCs faithfully recapitulate the inflammatory single-cell RNA signature of stromal cells enriched in multiple myeloma and osteosarcoma patient biopsies. Mechanistically, cancer EVs act through two distinct mechanisms. EV-associated TGFb induces IL6 production, while the EV-RNA cargo enhances TLR3-mediated chemokine production. We reveal that simultaneous blockade of downstream EV-activated pathways with ladarixin and tocilizumab disrupts metastasis formation and overcomes iMSC-induced resistance. CONCLUSIONS: Our observations establish iMSCs as major contributors to drug resistance, reveal EVs as physiological triggers of iMSC development and highlight a promising combination strategy to improve therapy response in bone cancer patients.

15.
Clin Epigenetics ; 15(1): 197, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129913

RESUMO

BACKGROUND: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS: Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS: Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação de DNA , Histonas/metabolismo , Relação Estrutura-Atividade
16.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201480

RESUMO

The application of doxorubicin (DOX) is hampered by cardiotoxicity, with diastolic dysfunction as the earliest manifestation. Fibrosis leads to impaired relaxation, but the mechanisms that operate shortly after DOX exposure are not clear. We asked whether the activation of cardiac fibroblasts (CFs) anticipates myocardial dysfunction and evaluated the effects of DOX on CF metabolism. CFs were isolated from the hearts of rats after the first injection of DOX. In another experiment, CFs were exposed to DOX in vitro. Cell phenotype and metabolism were determined. Early effects of DOX consisted of diastolic dysfunction and unchanged ejection fraction. Markers of pro-fibrotic remodeling and evidence of CF transformation were present immediately after treatment completion. Oxygen consumption rate and extracellular acidification revealed an increased metabolic activity of CFs and a switch to glycolytic energy production. These effects were consistent in CFs isolated from the hearts of DOX-treated animals and in naïve CFs exposed to DOX in vitro. The metabolic switch was paralleled with the phenotype change of CFs that upregulated markers of myofibroblast differentiation and the activation of pro-fibrotic signaling. In conclusion, the metabolic switch and activation of CFs anticipate DOX-induced damage and represent a novel target in the early phase of anthracycline cardiomyopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA