Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 145(4): 607-21, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565617

RESUMO

Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Histona Desacetilases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetilação , Animais , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Glucagon/metabolismo , Gluconeogênese , Homeostase , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
Cell Metab ; 34(1): 171-183.e6, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986332

RESUMO

Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Insulina/metabolismo , Lipólise/fisiologia
3.
Science ; 326(5951): 437-40, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19833968

RESUMO

Circadian clocks coordinate behavioral and physiological processes with daily light-dark cycles by driving rhythmic transcription of thousands of genes. Whereas the master clock in the brain is set by light, pacemakers in peripheral organs, such as the liver, are reset by food availability, although the setting, or "entrainment," mechanisms remain mysterious. Studying mouse fibroblasts, we demonstrated that the nutrient-responsive adenosine monophosphate-activated protein kinase (AMPK) phosphorylates and destabilizes the clock component cryptochrome 1 (CRY1). In mouse livers, AMPK activity and nuclear localization were rhythmic and inversely correlated with CRY1 nuclear protein abundance. Stimulation of AMPK destabilized cryptochromes and altered circadian rhythms, and mice in which the AMPK pathway was genetically disrupted showed alterations in peripheral clocks. Thus, phosphorylation by AMPK enables cryptochrome to transduce nutrient signals to circadian clocks in mammalian peripheral organs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano/fisiologia , Flavoproteínas/metabolismo , Fígado/metabolismo , Fatores de Transcrição ARNTL , Substituição de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Criptocromos , Meios de Cultura , Flavoproteínas/genética , Alimentos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleotídeos/farmacologia , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 103(30): 11323-8, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16844773

RESUMO

The nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor have been implicated in regulating bile acid, lipid, carbohydrate, and xenobiotic metabolism. Bile duct ligation was used to increase endogenous bile acids and evaluate the roles of these receptors in modulating cholestatic liver injury. FXR knockout (KO) mice were found to be protected from obstructive cholestasis. Concurrent deletion of FXR also could ameliorate an increase in liver injury that is seen usually in pregnane X receptor KO mice with cholestasis. Mechanisms proposed for this protection include the lowering of bile acid concentrations and altered expression of the hepatic transporters Mdr1, Mdr2, BSEP, and Mrp4. FXR KO mice also exhibit a biphasic lipid profile after bile duct ligation, with an increase in high-density lipoprotein cholesterol and triglycerides by day 6. The expression of apolipoprotein AV was reduced in these mice, implicating FXR in triglyceride regulation. We show that FXR modulates cholestasis by controlling bile acids within the hepatocyte and is involved in bile acid synthesis, bile excretion via BSEP, and serum export via Mrp4. This study strongly suggests a potential clinical role for FXR antagonists in the treatment of obstructive cholestatic liver disorders.


Assuntos
Colestase/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/patologia , Colestase/tratamento farmacológico , Lipídeos/química , Fígado/lesões , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Receptores Citoplasmáticos e Nucleares , Triglicerídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 102(6): 2063-8, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15684063

RESUMO

Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders.


Assuntos
Colestase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Fatores de Transcrição/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/cirurgia , Colestase/patologia , Colesterol/metabolismo , Receptor Constitutivo de Androstano , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Fatores de Transcrição/genética
6.
Mol Cell ; 11(4): 1079-92, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12718892

RESUMO

The farnesoid X receptor (FXR) functions as a bile acid (BA) sensor coordinating cholesterol metabolism, lipid homeostasis, and absorption of dietary fats and vitamins. However, BAs are poor reagents for characterizing FXR functions due to multiple receptor independent properties. Accordingly, using combinatorial chemistry we evolved a small molecule agonist termed fexaramine with 100-fold increased affinity relative to natural compounds. Gene-profiling experiments conducted in hepatocytes with FXR-specific fexaramine versus the primary BA chenodeoxycholic acid (CDCA) produced remarkably distinct genomic targets. Highly diffracting cocrystals (1.78 A) of fexaramine bound to the ligand binding domain of FXR revealed the agonist sequestered in a 726 A(3) hydrophobic cavity and suggest a mechanistic basis for the initial step in the BA signaling pathway. The discovery of fexaramine will allow us to unravel the FXR genetic network from the BA network and selectively manipulate components of the cholesterol pathway that may be useful in treating cholesterol-related human diseases.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/agonistas , Proteínas de Ligação a DNA/química , Hepatócitos/metabolismo , Fatores de Transcrição/química , Sequência de Aminoácidos/genética , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Ácido Quenodesoxicólico/metabolismo , Colo/metabolismo , Reações Cruzadas/genética , Proteínas de Ligação a DNA/agonistas , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Marcação de Genes , Biblioteca Genômica , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/metabolismo , Conformação Molecular , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/agonistas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA