Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856834

RESUMO

Hepatitis C Virus (HCV) is a significant health concern affecting a large portion of the global population and is a major cause of acute liver diseases, including cirrhosis. The variability in the HCV genome mainly results from the rapid replication facilitated by the NS5B polymerase, making it a prime target for anti-HCV drug development. This study explores potential compounds from marine bacteria that could inhibit the HCV NS5B polymerase by virtual screening, analyzing the energetics, and dynamic behavior of target-compound complexes. Virtual screening with the Lipinski filter was employed to select compounds from the marine bacteria database that demonstrated strong binding affinity to NS5B. The top four (CMNPD27216, CMNPD21066, CMNPD21065, and CMNPD27283) compounds, ranked by their re-docking scores, underwent additional evaluation. Molecular dynamics simulations for 200 ns were conducted to assess the dynamic stability of these complexes in a solvent environment. Furthermore, methods such as MM-GBSA, PCA, and free energy landscape analysis were used to analyze the system's energetics and identify stable conformations by locating transition states. The findings suggest that these compounds exhibit promising binding capabilities to HCV polymerase and could be considered for future experimental validation.

2.
Luminescence ; 39(6): e4803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880967

RESUMO

Hypertension and hyperlipidemia are two common conditions that require effective management to reduce the risk of cardiovascular diseases. Among the medications commonly used for the treatment of these conditions, valsartan and pitavastatin have shown significant efficacy in lowering blood pressure and cholesterol levels, respectively. In this study, synchronous spectrofluorimetry coupled to chemometric analysis tools, specifically concentration residual augmented classical least squares (CRACLS) and spectral residual augmented classical least squares (SRACLS), was employed for the determination of valsartan and pitavastatin simultaneously. The developed models exhibited excellent predictive performance with relative root mean square error of prediction (RRMSEP) of 2.253 and 2.1381 for valsartan and pitavastatin, respectively. Hence, these models were successfully applied to the analysis of synthetic samples and commercial formulations as well as plasma samples with high accuracy and precision. Besides, the greenness and blueness profiles of the determined samples were also evaluated to assess their environmental impact and analytical practicability. The results demonstrated excellent greenness and blueness scores with AGREE score of 0.7 and BAGI score of 75 posing the proposed method as reliable and sensitive approach for the determination of valsartan and pitavastatin with potential applications in pharmaceutical quality control, bioanalytical studies, and therapeutic drug monitoring.


Assuntos
Quinolinas , Espectrometria de Fluorescência , Valsartana , Quinolinas/química , Quinolinas/sangue , Valsartana/química , Valsartana/sangue , Análise dos Mínimos Quadrados
3.
Saudi Pharm J ; 29(6): 616-624, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34194269

RESUMO

Vancomycindosing error and inappropriate monitoring is a common problem in hospital daily practice. In King Abdulaziz Medical City (KAMC) in Jeddah, a high percentage of abnormal vancomycin trough levels is still detected despite using the recommended dose. Therefore, the current research objective is to study the major causes of vancomycin dosing errors. This retrospective, single-center, cross-sectional study was carried out at KAMC hospital in Jeddah from January 1st until December 31st 2019. All adult patients (≥15 years) who received vancomycin and had an initial abnormal trough level at the measured steady-state were included in this study. 472 patients have met the study inclusion criteria. The current study evaluated the factors that play a role in causing vancomycin trough level abnormalities such as sampling time, vancomycin dosing, and patient's pharmacokinetic and pharmacodynamic variations. In this study, we found that pharmacokinetic and pharmacodynamic variability was attributed to 65% of vancomycin's abnormal trough level. Also, the result showed a significantly increased odds of the low trough in the non-elderly group (OR 6, 95% CI 2.48 - 14.9, P < 0.001) and febrile neutropenic patients (OR 2.21, 95% CI 1.119 - 4.365, P < 0.05). However, the odds of high trough levels were significantly elevated among patients who have CrCl < 50 ml/min (OR 5, 95% CI 1.262-20.539, P < 0.05). In addition, the present investigation revealed that the occurrence of abnormal vancomycin levels was not affected by daily duty time or working days (p > 0.05). The current study indicated that vancomycin dosing errors were common in KAMC patients; thus, there is an unmet need to evaluate the causes of vancomycin abnormal trough level and optimize a strategy that would enhance the therapeutic effectiveness and minimize the potential toxicity.

4.
Drug Dev Ind Pharm ; 42(8): 1258-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26599694

RESUMO

OBJECTIVE: The overall objective of this work is to determine the percutaneous absorption of chlorpromazine hydrochloride from pluronic lecithin organogels (PLO gels) and verify the suitability of topically applied chlorpromazine hydrochloride PLO gels for use in hospice patients for relieving symptoms such as vomiting and nausea during the end stages of life. METHODS: PLO gels of chlorpromazine hydrochloride were prepared using isopropyl palmitate (IPP) or ricinoleic acid (RA) as oil phase. In vitro percutaneous absorption of chlorpromazine hydrochloride was assessed through porcine ear and human abdominal skin. Further, the theoretical steady state plasma concentration (Css) of chlorpromazine was calculated from the flux values. RESULTS: The pH, viscosity, and stability of both PLO gels prepared with IPP and RA were comparable. The thixotropic property of RA PLO gel was found to be better than that of IPP PLO gel. The permeation of chlorpromazine hydrochloride was higher from RA PLO gel than from IPP PLO gel and pure drug solution. Theoretical Css of chlorpromazine from pure drug solution, IPP PLO gel and RA PLO gel were found to be 1.05, 1.20, and 1.50 ng/ml, respectively. PLO gels only marginally increased the flux and theoretical Css of chlorpromazine. CONCLUSION: From this study, it is clearly evident that PLO gels fail to achieve required systemic levels of chlorpromazine following topical application. Chlorpromazine PLO gel may not be effective in treating nausea and vomiting for hospice patients with swallowing difficulties.


Assuntos
Clorpromazina/administração & dosagem , Clorpromazina/metabolismo , Géis/administração & dosagem , Géis/metabolismo , Lecitinas/química , Pele/metabolismo , Abdome , Administração Cutânea , Animais , Clorpromazina/química , Sistemas de Liberação de Medicamentos/métodos , Orelha , Géis/química , Humanos , Palmitatos/química , Ácidos Ricinoleicos/química , Absorção Cutânea/fisiologia , Suínos , Viscosidade
5.
Int J Biol Macromol ; 271(Pt 1): 132568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782329

RESUMO

The aim of this research is to prepare and identify functionalized carboxymethylcellulose/mesoporous silica nanohydrogels (CMC/NH2-MCM-41) for obtaining a pH-sensitive system for the controlled release of drugs. The beads of CMC/NH2-MCM-41 nanocomposites were prepared by dispersing NH2-MCM-41 in a CMC polymer matrix and crosslinking with ferric ions (Fe3+). The SEM analysis of samples revealed enhancement in surface porosity of the functionalized nanohydrogel beads compared to the conventional beads. Swelling of the prepared functionalized nanohydrogels was evaluated at various pH values including pH = 7.35-7.45 (simulated body fluid or healthy cells), pH = 6 (simulated intestinal fluid), and pH = 1.5-3.5 (simulated gastric fluid). The swelling of CMC/MCM-41 and CMC/NH2-MCM-41 nanohydrogels at the pH values of simulated body fluid and simulated intestinal fluid is much higher than that of simulated gastric fluid, indicating successful synthesis of pH-sensitive nanohydrogels for drug delivery. The drug loading results showed that drug release in the CMC/NH2-MCM-41 system is much slower than that in the CMC/MCM-41 system. The results of the survival studies for the manufactured systems showed a very good biocompatibility of the designed drug delivery systems for biological applications. By coating the surface of functionalized mesopores with CMC hydrogel, we were able to develop a pH-sensitive intelligent drug delivery system.


Assuntos
Carboximetilcelulose Sódica , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Hidrogéis , Metformina , Naproxeno , Hidrogéis/química , Carboximetilcelulose Sódica/química , Concentração de Íons de Hidrogênio , Metformina/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Naproxeno/química , Portadores de Fármacos/química , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos , Humanos , Desenho de Fármacos , Porosidade
6.
Front Med (Lausanne) ; 11: 1397648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841581

RESUMO

For cancer therapy, the focus is now on targeting the chemotherapy drugs to cancer cells without damaging other normal cells. The new materials based on bio-compatible magnetic carriers would be useful for targeted cancer therapy, however understanding their effectiveness should be done. This paper presents a comprehensive analysis of a dataset containing variables x(m), y(m), and U(m/s), where U represents velocity of blood through vessel containing ferrofluid. The effect of external magnetic field on the fluid flow is investigated using a hybrid modeling. The primary aim of this research endeavor was to construct precise and dependable predictive models for velocity, utilizing the provided input variables. Several base models, including K-nearest neighbors (KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and evaluated. Additionally, an ensemble model called AdaBoost was implemented to further enhance the predictive performance. The hyper-parameter optimization technique, specifically the BAT optimization algorithm, was employed to fine-tune the models. The results obtained from the experiments demonstrated the effectiveness of the proposed approach. The combination of the AdaBoost algorithm and the decision tree model yielded a highly impressive score of 0.99783 in terms of R2, indicating a strong predictive performance. Additionally, the model exhibited a low error rate, as evidenced by the root mean square error (RMSE) of 5.2893 × 10-3. Similarly, the AdaBoost-KNN model exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291 × 10-2. Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 0.99603, accompanied by an RMSE of 7.1369 × 10-3.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124614, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38865892

RESUMO

Celecoxib and tramadol have been combined in a novel FDA-approved medication to address acute pain disorders requiring opioid treatment when other analgesics proved either intolerable or ineffective. The absorbance spectra of celecoxib and tramadol exhibit significant overlap, posing challenges for their individual quantification. This study introduces a spectrophotometric quantification approach for celecoxib and tramadol using a principle component regression assistive model to assist resolving the overlapped spectra and quantifying both drugs in their binary mixture. The model was constructed by establishing calibration and validation sets for the celecoxib and tramadol mixture, employing a five-level, two-factor experimental design, resulting in 25 samples. Spectral data from these mixtures were measured and preprocessed to eliminate noise in the 200-210 nm range and zero absorbance values in the 290-400 nm range. Consequently, the dataset was streamlined to 81 variables. The predicted concentrations were compared with the known concentrations of celecoxib and tramadol, and the errors in the predictions were evidenced calculating root mean square error of cross-validation and root mean square error of prediction. Validation results demonstrate the efficacy of the models in predicting outcomes; recovery rates approaching 100 % are demonstrated with relative root mean square error of prediction (RRMSEP) values of 0.052 and 0.164 for tramadol and celecoxib, respectively. The selectivity was further evaluated by quantifying celecoxib and tramadol in the presence of potentially interfering drugs. The model demonstrated success in quantifying celecoxib and tramadol in laboratory-prepared tablets, producing metrics consistent with those reported in previously established spectrophotometric methods.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124543, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38850821

RESUMO

Futibatinib is a powerful inhibitor of fibroblast growth factor receptors that impedes its phosphorylation and subsequently leading to a reduction in in cell viability across various cell lines. Futibatinib was approved for initial use as an effective treatment for several diseases, including non-small cell lung cancer and breast cancer. Herein, a novel selective fluorescence probe was created for futibatinib quantification in various matrices, including pharmaceutical formulation and human plasma. The technique primarily depends on futibatinib's chemical conversion into a fluorescent product through a reaction with trimethylamine and bromoacetyl bromide. The created fluorescent probe exhibits maximum emission peak at 338 nm upon excitation at 248 nm. The method provided a low detection limit of 0.120 ng/mL and maintained a linear concentration-dependent relationship across the range of 1-200 ng/mL. High sensitivity, accuracy and precision were demonstrated for futibatinib quantification in pharmaceutical formulation and spiked plasma matrix by the method, which was validated in accordance with ICH requirements.

9.
Front Pharmacol ; 14: 1025013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825154

RESUMO

The purpose of this study was to assess the parameters of doxorubicin (DOX) loaded lipid polymer hybrid nanoparticles (LPHNs) formulation development, and then the bioavailability of DOX were determined in the rabbit model, in order to evaluate the intrinsic outcome of dosage form improvement after the oral administration. LPHNs were prepared by combine approach, using both magnetic stirring and probe sonication followed by its characterization in terms of size-distribution (Zeta Size), entrapment efficiency (EE), loading capacity, and the kinetics of DOX. LPHNPs were further characterized by using scanning electron microscopy (SEM), powder X-Ray diffractometry (P-XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), in vitro and in vivo studies. The molecular modeling was determined through the density functional theory (DFT) simulations and interactions. DOX loaded and unloaded LPHNs were administered orally to the rabbits for bioavailability and pharmacokinetic parameters determinations. The plasma concentration of DOX was determined through high performance liquid chromatography (HPLC). The average size of DOX-loaded LPHNs was 121.90 ± 3.0 nm. The drug loading of DOX was 0.391% ± 0.01 of aqueous dispersion, where its encapsulation efficiency was 95.5% ± 1.39. After oral administration of the DOX-LPHNs, the area under the plasma drug concentration-time curve (AUC) improved about 2-folds comparatively (p < 0.05). DFT simulations were used to understand the interactions of polymers with different sites of DOX molecule. The larger negative binding energies (-9.33 to -18.53 kcal/mol) of the different complexes evince that the polymers have stronger affinity to bind with the DOX molecule while the negative values shows that the process is spontaneous, and the synthesis of DOX-LPHNs is energetically favorable. It was concluded that DOX-LPHNs provides a promising new formulation that can enhance the oral bioavailability, which have optimized compatibilities and improve the pharmacokinetic of DOX after oral administration.

10.
Healthcare (Basel) ; 11(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766937

RESUMO

The AUC0-24 is the most accurate way to track the vancomycin level while the Cmin is not an accurate surrogate. Most hospitals in Saudi Arabia are under-practicing the AUC-guided vancomycin dosing and monitoring. No previous work has been conducted to evaluate such practice in the whole kingdom. The current study objective is to calculate the AUC0-24 using the Bayesian dosing software (PrecisePK), identify the probability of patients who receive the optimum dose of vancomycin, and evaluate the accuracy and precision of the Bayesian platform. This retrospective study was conducted at King Abdulaziz medical city, Jeddah. All adult patients treated with vancomycin were included. Pediatric patients, critically ill patients requiring ICU admission, patients with acute renal failure or undergoing dialysis, and febrile neutropenic patients were excluded. The AUC0-24 was predicted using the PrecisePK platform based on the Bayesian principle. The two-compartmental model by Rodvold et al. in this platform and patients' dose data were utilized to calculate the AUC0-24 and trough level. Among 342 patients included in the present study, the mean of the estimated vancomycin AUC0-24 by the posterior model of PrecisePK was 573 ± 199.6 mg, and the model had a bias of 16.8%, whereas the precision was 2.85 mg/L. The target AUC0-24 (400 to 600 mg·h/L) and measured trough (10 to 20 mg/L) were documented in 127 (37.1%) and 185 (54%), respectively. Furthermore, the result demonstrated an increase in odds of AUC0-24 > 600 mg·h/L among trough level 15-20 mg/L group (OR = 13.2, p < 0.05) as compared with trough level 10-14.9 mg/L group. In conclusion, the discordance in the AUC0-24 ratio and measured trough concentration may jeopardize patient safety, and implantation of the Bayesian approach as a workable alternative to the traditional trough method should be considered.

11.
Antibiotics (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37370298

RESUMO

The pharmacokinetics of vancomycin vary significantly between specific groups of patients, such as critically ill patients and patients with hematological malignancy (HM) with febrile neutropenia (FN). Recent evidence suggests that the use of the usual standard dose of antibiotics in patients with FN may not offer adequate exposure due to pharmacokinetic variability (PK). Therefore, the purpose of this study is to assess the effect of FN on AUC0-24 as a key parameter for vancomycin monitoring, as well as to determine which vancomycin PK parameters are affected by the presence of FN using Bayesian software PrecisePK in HM with FN. This study was carried out in King Abdulaziz Medical City. All adult patients who were admitted to the Princess Norah Oncology Center PNOC between 1 January and 2017 and 31 December 2020, hospitalized and received vancomycin with a steady-state trough concentration measured before the fourth dose, were included. During the trial period, 297 patients received vancomycin during their stay at the oncology center, 217 of them meeting the inclusion criteria. Pharmacokinetic parameters were estimated for the neutropenic and non-FN patients using the precise PK Bayesian platform. The result showed that there was a significant difference (p < 0.05) in vancomycin clearance Clvan, the volume of distribution at a steady-state Vdss, the volume of distribution for peripheral compartment Vdp, half-life for the elimination phase t½ß, and the first-order rate constant for the elimination process ß in FN compared to non-FN patients. Furthermore, AUC0-24 was lower for FN patients compared to non-FN patients, p < 0.05. FN has a significant effect on the PK parameters of vancomycin and AUC0-24, which may require specific consideration during the treatment initiation.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36767451

RESUMO

INTRODUCTION: The Ministry of Health in Saudi Arabia has announced a plan to eradicate hepatitis C virus (HCV) infection. This study sought to evaluate the knowledge levels and testing rate among the general population of Saudi Arabia. METHODS: A cross-sectional study was conducted using data collected from an online, self-administered survey. Multivariable analysis was conducted using multiple binary logistic regression models to identify factors associated with low knowledge levels as well as predictors of HCV testing. RESULTS: A total of 689 participants completed the survey. While most participants (88%) have heard of HCV infection, less than half (47.3%) understood that HCV is curable with medications. More than half of the participants (53.7%) have low knowledge about HCV infection. Testing for HCV was reported by 123 respondents (17.8%), and the odds of testing for HCV were significantly lower among residents of the Makkah region (OR = 0.59 [95% CI: 0.36-0.97]) and those with low knowledge level (OR = 0.47 [95% CI: 0.29-0.74]). HCV diagnosis was reported by nine respondents (1.3%), of whom only four reported receiving treatment (44%). CONCLUSIONS: Our study indicates inadequate knowledge levels and relatively low testing rate. These findings underscore the need for national awareness campaigns and more effective strategies for HCV screening.


Assuntos
Hepatite C , Humanos , Estudos Transversais , Arábia Saudita/epidemiologia , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Hepacivirus , Inquéritos e Questionários , Conhecimentos, Atitudes e Prática em Saúde
13.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631972

RESUMO

Many investigators have focused on the development of biocompatible polyurethanes by chemical reaction of functional groups contained in a spacer and introduced in the PU backbone or by a grafting method on graft polymerization of functional groups. In this study, alginate-based polyurethane (PU) composites were synthesized via step-growth polymerization by the reaction of hydroxyl-terminated polybutadiene (HTPB) and hexamethylene diisocyanate (HMDI). The polymer chains were further extended with blends of 1,4-butanediol (1,4-BDO) and alginate (ALG) with different mole ratios. The structures of the prepared PU samples were elucidated with FTIR and 1H NMR spectroscopy. The crystallinity of the prepared samples was evaluated with the help of X-ray diffraction (XRD). The XRD results reveal that the crystallinity of the PU samples increases when the concentration of alginate increases. Thermogravimetric (TGA) results show that samples containing a higher amount of alginate possess higher thermal stability. ALG-based PU composite samples show more biocompatibility and less hemolytic activity. Mechanical properties, contact angle, and water absorption (%) were also greatly affected.

14.
J Funct Biomater ; 13(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36412865

RESUMO

Green biosynthesis, one of the most dependable and cost-effective methods for producing carbon nanotubes, was used to synthesize nonhazardous silver-functionalized multi-walled carbon nanotubes (SFMWCNTs) successfully. It has been shown that the water-soluble organic materials present in the olive oil plant play a vital role in converting silver ions into silver nanoparticles (Ag-NPs). Olive-leaf extracts contain medicinal properties and combining these extracts with Ag-NPs is often a viable option for enhancing drug delivery; thus, this possibility was employed for in vitro treating cancer cells as a proof of concept. In this study, the green technique for preparing SFMWCNTs composites using plant extracts was followed. This process yielded various compounds, the most important of which were Hydroxytyrosol, Tyrosol, and Oleuropein. Subsequently, a thin film was fabricated from the extract, resulting in a natural polymer. The obtained nanomaterials have an absorption peak of 419 nm in their UV-Vis. spectra. SEM and EDS were also used to investigate the SFMWCNT nanocomposites' morphology simultaneously. Moreover, the MTT assay was used to evaluate the ability of SFMWCNTs to suppress cancer cell viability on different cancer cell lines, MCF7 (human breast adenocarcinoma), HepG2 (human hepatocellular carcinoma), and SW620 (human colorectal cancer). Using varying doses of SFMWCNT resulted in the most significant cell viability inhibition, indicating the good sensitivity of SFMWCNTs for treating cancer cells. It was found that performing olive-leaf extraction at a low temperature in an ice bath leads to superior results, and the developed SFMWCNT nanocomposites could be potential treatment options for in vitro cancer cells.

15.
Biomed Res Int ; 2022: 9914173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017391

RESUMO

Nanoscience has developed various greener approaches as an alternate method for the synthesis of nanoparticles and nanocomposites. The present study discusses the efficacy of berries extract for the synthesis of ZnO nanocomposites. Characterization of synthesized nanocomposite were done by SEM, UV/VIS spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and XRD techniques. The crystalline nature of the synthesized nanoparticles was verified by XRD pattern in the range of 10-80 nm. The UV absorption peak of Elaeagnus umbellata (ZnO-EU) nanocomposite at 340 nm, Rubus idaeus (ZnO-Ri) nanocomposite at 360 nm, and Rubus fruticosus (ZnO-Rf) nanocomposite at 360 nm was observed. The nanocomposites were analyzed for their antimicrobial activity and found to be effective against three phytopathogens. The antimicrobial activity of ZnO nanocomposites showed good results against Escherichia coli (341), Staphylococcus aureus (345B), and Pseudomonas aeruginosa (5994 NLF). This study presents a simple and inexpensive approach for synthesizing zinc oxide nanocomposites with effective antibacterial activity.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Óxido de Zinco , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli , Frutas , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
16.
Pharmaceutics ; 14(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36559223

RESUMO

Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.

17.
Cureus ; 14(9): e29568, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36312611

RESUMO

INTRODUCTION: Vancomycin administration in individuals with hematological malignancy or neutropenia is associated with a suboptimal trough concentration. Nonetheless, most studies did not distinguish whether low vancomycin trough concentrations were due to hematological malignancies or neutropenia. This study aimed to determine the association between types of hematological malignancy and febrile neutropenia with low vancomycin concentrations. METHODS: The present retrospective chart review study was conducted by using clinical data adopted from computerized physician order entries (BestCare®) for all of the patients who received intravenous vancomycin treatment between January 2017 and December 2020 at King Abdulaziz Medical City in Jeddah. RESULTS: Out of the 296 patients, 217 were included. There was no significant association between the type of hematological malignancy and the incidence of a low trough concentration (p > 0.05), while a significant association between febrile neutropenia and the incidence of a low trough concentration was observed (p < 0.05). Furthermore, the predictors for a low trough among febrile neutropenic patients were creatinine clearance (CrCI) and a low albumin concentration. In addition, there was a significant association between febrile neutropenia and augmented renal clearance (p < 0.05). CONCLUSIONS: The findings of this study conclude that febrile neutropenia is associated with low vancomycin concentrations. Interestingly, augmented renal clearance was observed in most of the febrile neutropenia patients with a significant association, which is considered the main driver for a low trough in neutropenic patients.

18.
RSC Adv ; 12(36): 23263-23273, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090406

RESUMO

A step-scheme (S-scheme) photocatalyst made of sulfurized graphitic carbon nitride/cobalt doped zinc ferrite (S-g-C3N4/Co-ZF) was constructed using a hydrothermal process because the building of S-scheme systems might increase the lifespan of highly reactive charge carriers. Utilizing cutting-edge methods, the hybrid photocatalyst was evaluated by employing TEM, XPS, XRD, BET, FTIR, transient photo-response, UV-vis, EIS and ESR signals. In order to create a variety of binary nanocomposites (NCs), nanoparticles (NPs) of 6% cobalt doped zinc ferrite (Co-ZF) were mixed with S-g-C3N4 at various concentrations, ranging from 10 to 80 wt%. For photocatalytic dye removal, a particular binary NC constructed between S-g-C3N4 and Co-ZF produces a huge amount of catalytic active sites. The findings showed that loading of S-g-C3N4 on 6% Co-ZF NPs serves as a good heterointerface for e-/h+ separation and transportation through the S-scheme S-g-C3N4/Co-ZF heterojunction. By boosting the hybrid system's BET surface area for the photocatalytic process, the addition of 6% Co-ZF improves the system's ability to absorb more sunlight and boosts its photocatalytic activity. The highest photo-removal effectiveness (98%), which is around 2.45 times higher than that of its competitors, was achieved by the hybrid photocatalyst system with an ideal loading of 48% Co-ZF. Furthermore, the trapping studies showed that the primary species involved in the MB aqueous photo-degradation were ˙OH- and h+.

19.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145720

RESUMO

Wounds are the most common causes of mortality all over the world. Topical drug delivery systems are more efficient in treating wounds as compared to oral delivery systems because they bypass the disadvantages of the oral route. The aim of the present study was to formulate and evaluate in vitro in vivo nanoemulgels loaded with eucalyptol for wound healing. Nanoemulsions were prepared using the solvent emulsification diffusion method by mixing an aqueous phase and an oil phase, and a nanoemulgel was then fabricated by mixing nanoemulsions with a gelling agent (Carbopol 940) in a 1:1 ratio. The nanoemulgels were evaluated regarding stability, homogeneity, pH, viscosity, Fourier-transform infrared spectroscopy (FTIR), droplet size, zeta potential, polydispersity index (PDI), spreadability, drug content, in vitro drug release, and in vivo study. The optimized formulation, F5, exhibited pH values between 5 and 6, with no significant variations at different temperatures, and acceptable homogeneity and spreadability. F5 had a droplet size of 139 ± 5.8 nm, with a low polydispersity index. FTIR studies showed the compatibility of the drug with the excipients. The drug content of F5 was 94.81%. The percentage of wound contraction of the experimental, standard, and control groups were 100% ± 0.015, 98.170% ± 0.749, and 70.846% ± 0.830, respectively. Statistically, the experimental group showed a significant difference (p < 0.03) from the other two groups. The results suggest that the formulated optimized dosage showed optimum stability, and it can be considered an effective wound healing alternative.

20.
J Ocul Pharmacol Ther ; 34(4): 312-324, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29406793

RESUMO

PURPOSE: The purpose of this study was to develop and evaluate a novel dexamethasone- and tobramycin-loaded microemulsion for its potential for treating anterior segment eye infections. METHODS: The microemulsion was evaluated for pH, particle size, zeta potential, light transmittance, morphology, and in vitro drug release. Sterility of the microemulsion was evaluated by direct as well as plate inoculation methods. Anti-inflammatory activity of dexamethasone, bactericidal activity of tobramycin, and cytotoxicity of the microemulsion were assessed and compared to that of the marketed eye drop suspension (Tobradex®). Histological evaluation was performed in bovine corneas to assess the safety of microemulsion in comparison to Tobradex suspension. In addition, the stability of the microemulsion was studied at 4°C, 25°C, and 40°C. RESULTS: The pH of the microemulsion was close to the pH of tear fluid. The microemulsion displayed an average globule size under 20 nm, with light transmittance around 95%-100%. The aseptically prepared microemulsion remained sterile for up to 14 days. The cytotoxicity of the microemulsion in bovine corneal endothelial cells was comparable to that of the Tobradex suspension. The anti-inflammatory activity of dexamethasone and the antibacterial activity of tobramycin from the microemulsion were significantly higher than those of the Tobradex suspension (P < 0.05). Histological evaluation showed an intact corneal epithelium without any signs of toxicity, and the developed microemulsion was found to be stable at 4°C and 25°C for 3 months. CONCLUSION: In conclusion, the developed microemulsion could be explored as a suitable alternative to the marketed suspension for treating anterior segment eye infections.


Assuntos
Antibacterianos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Córnea/efeitos dos fármacos , Dexametasona/uso terapêutico , Oftalmopatias/tratamento farmacológico , Soluções Oftálmicas/uso terapêutico , Tobramicina/uso terapêutico , Administração Tópica , Animais , Antibacterianos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Bovinos , Córnea/patologia , Dexametasona/administração & dosagem , Emulsões/administração & dosagem , Emulsões/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Oftalmopatias/patologia , Concentração de Íons de Hidrogênio , Soluções Oftálmicas/administração & dosagem , Tobramicina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA