Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e14763, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025818

RESUMO

Due to the inherent environmental footprint of petroleum derived transformer fluids, the power industry is gradually exploring the potential of vegetable oils as alternatives. The impetus comes mostly from vegetable oils renewability and their inherent biodegradability. However, the major drawback in the use of vegetable oils as dielectric fluids is their lower oxidative stability and higher kinematic viscosity compared to mineral oils. The results obtained clearly demonstrate the correlation between spectroscopic data induction time, kinematic viscosity, acid value, and peroxide value. Quantitatively, the absorption frequencies of functional groups in vegetable oil transformer fluids that can be correlated to the mentioned quality parameters show noticeable changes with aging/oxidative degradation. The study also demonstrates the utility of integrating spectroscopic data to understand trends in induction time and kinematic viscosity of oil samples heated under transformer service conditions.

2.
ACS Omega ; 8(10): 9086-9100, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936321

RESUMO

For decades now, low salinity water flooding (LSWF) oil recovery has emerged as an environmentally benign and cost-effective method for improved oil recovery, where research findings have reported pH and interfacial tension effects. Considering the effect of oil chemistry on interfacial tension and the potential of this chemistry to have a direct relationship with LSWF, we measured the interfacial tension of four crude oils with composition varying from those of conventional to unconventional ones. We also characterized the crude oil samples using infrared spectroscopy and a wet chemistry method based on asphaltene precipitation. Our research approach has enabled us to relate the composition of crude oil to the interfacial tension trend at pH encountered in improved oil recovery schemes. Our research methodology, based on an integrated approach to using infrared spectroscopy and interfacial tensiometry, has also enabled us to propose a more robust theoretical explanation for current observations in LSWF related to pH and interfacial tension. In this regard, oil-water interfacial tension depends on the concentration of polar components, such that the higher the concentration of polar groups in crude oil, the higher the interfacial tension at a given pH of aqueous solution. We have also shown that the acid-base behavior of polar groups at the oil-water interface provides a theoretical interpretation of the explicit relationship between oil-water interfacial tension and the electrostatic components of interfacial tension as given by the energy additivity theory.

3.
Sci Rep ; 12(1): 5710, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383219

RESUMO

In colloidal science and bioelectrostatics, the linear Poisson Boltzmann equation (LPBE) has been used extensively for the calculation of potential and surface charge density. Its fundamental assumption rests on the premises of low surface potential. In the geological sequestration of carbon dioxide in saline aquifers, very low pH conditions coupled with adsorption induced reduction of surface charge density result in low pH conditions that fit into the LPB theory. In this work, the Gouy-Chapman model of the electrical double layer has been employed in addition to the LPBE theory to develop a contact angle model that is a second-degree polynomial in pH. Our model contains the point of zero charge pH of solid surface. To render the model applicable to heterogeneous surfaces, we have further developed a model for the effective value of the point of zero charge pH. The point of zero charge pH model when integrated into our model enabled us to determine the point of zero charge pH of sandstone, quartz and mica using literature based experimental data. In this regard, a literature based thermodynamic model was used to calculate carbon dioxide solubility and pH of aqueous solution. Values of point of zero charge pH determined in this paper agree with reported ones. The novelty of our work stems from the fact that we have used the LPB theory in the context of interfacial science completely different from the classical approach, where the focus is on interparticle electrostatics involving colloidal stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA