Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioorg Med Chem ; 105: 117727, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669736

RESUMO

The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) plays a key role in the development of prostate cancer. In this work, seventeen derivatives of the natural diterpene totarol were prepared by copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of the correspondingO-propargylated totarol with aryl or alkyl azides and screened for their inhibitory activities toward hPIP5K1α. Five compounds, 3a, 3e, 3f, 3i, and 3r, strongly inhibited the enzyme activity with IC50 values of 1.44, 0.46, 1.02, 0.79, and 3.65 µM, respectively, with the most potent inhibitor 3e 13-[(1-(3-nitrophenyl)triazol-4yl)methoxy]-totara-8,11,13-triene). These compounds were evaluated on their antiproliferative effects in a panel of prostate cancer cell lines. Compound 3r inhibited the proliferation of LNCaP, PC3 and DU145 cells at 20 µM, strongly, but also has strong cytotoxic effects on all tested cells.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Fosfotransferases (Aceptor do Grupo Álcool) , Triazóis , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Estrutura Molecular , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/síntese química , Relação Dose-Resposta a Droga , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Simulação de Acoplamento Molecular
2.
Bioorg Chem ; 132: 106362, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657273

RESUMO

Dysregulated inflammasome activity, particularly of the NLRP3 inflammasome, is associated with the development of several inflammatory diseases. The study of molecules directly targeting NLRP3 is an emerging field in the discovery of new therapeutic compounds for the treatment of inflammatory disorders. Friedelane triterpenes are biologically active phytochemicals having a wide range of activities including anti-inflammatory effects. In this work, we evaluated the potential anti-inflammatory activity of phenolic and quinonemethide nor-triterpenes (1-11) isolated from Maytenus retusa and some semisynthetic derivatives (12-16) through inhibition of the NLRP3 inflammasome in macrophages. Among them, we found that triterpenes 6 and 14 were the most potent, showing markedly reduced caspase-1 activity, IL-1ß secretion (IC50 = 1.15 µM and 0.19 µM, respectively), and pyroptosis (IC50 = 2.21 µM and 0.13 µM, respectively). Further characterization confirmed their selective inhibition of NLRP3 inflammasome in both canonical and non-canonical activation pathways with no effects on AIM2 or NLRC4 inflammasome activation.


Assuntos
Inflamassomos , Triterpenos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenóis , Triterpenos/farmacologia , Anti-Inflamatórios/farmacologia
3.
Drug Dev Res ; 84(1): 84-95, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36401841

RESUMO

The cardiovascular side effects associated with doxorubicin (DOX), a wide spectrum anticancer drug, have limited its clinical application. Therefore, to explore novel strategies with cardioprotective effects, a series of new labdane conjugates were prepared (6a-6c and 8a-8d) from the natural diterpene labdanodiol (1). These hybrid compounds contain anti-inflammatory privileged structures such as naphthalimide, naphthoquinone, and furanonaphthoquinone. Biological activity of these conjugates against DOX-induced cardiotoxicity was tested in vitro and the potential molecular mechanisms of protective effects were explored in H9c2 cardiomyocytes. Three compounds 6c, 8a, and 8b significantly improved cardiomyocyte survival, via inhibition of reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways (extracellular signal-regulated kinase and c-Jun N-terminal kinase) and autophagy mediated by Akt activation. Some structure-activity relationships were outlined, and the best activity was achieved with the labdane-furonaphthoquinone conjugate 8a having an N-cyclohexyl substituent. The findings of this study pave the way for further investigations to obtain more compounds with potential cardioprotective activity.


Assuntos
Diterpenos , Miócitos Cardíacos , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Transdução de Sinais , Apoptose , Doxorrubicina/efeitos adversos , Diterpenos/farmacologia , Estresse Oxidativo
4.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069498

RESUMO

Tamoxifen is the most widely used selective modulator of estrogen receptors (SERM) and the first strategy as coadjuvant therapy for the treatment of estrogen-receptor (ER) positive breast cancer worldwide. In spite of such success, tamoxifen is not devoid of undesirable effects, the most life-threatening reported so far affecting uterine tissues. Indeed, tamoxifen treatment is discouraged in women under risk of uterine cancers. Recent molecular design efforts have endeavoured the development of tamoxifen derivatives with antiestrogen properties but lacking agonistic uterine tropism. One of this is FLTX2, formed by the covalent binding of tamoxifen as ER binding core, 7-nitrobenzofurazan (NBD) as the florescent dye, and Rose Bengal (RB) as source for reactive oxygen species. Our analyses demonstrate (1) FLTX2 is endowed with similar antiestrogen potency as tamoxifen and its predecessor FLTX1, (2) shows a strong absorption in the blue spectral range, associated to the NBD moiety, which efficiently transfers the excitation energy to RB through intramolecular FRET mechanism, (3) generates superoxide anions in a concentration- and irradiation time-dependent process, and (4) Induces concentration- and time-dependent MCF7 apoptotic cell death. These properties make FLTX2 a very promising candidate to lead a novel generation of SERMs with the endogenous capacity to promote breast tumour cell death in situ by photosensitization.


Assuntos
Antagonistas de Estrogênios/química , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/metabolismo , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Útero/metabolismo
5.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833907

RESUMO

Botrytis cinerea is a ubiquitous fungus that affects hundreds of plants, resulting in economic losses to the horticulture and fruit industry. The search for new antifungal agents is a matter of current interest. Thus, in this work a series of geranylated phenols in which the side alkyl chain has been hydrated have been synthesized, and their activity against B. cinerea has been evaluated. The coupling of phenol and geraniol has been accomplished under microwave irradiation obtaining the highest reaction yields in the shortest reaction times. Hydration of the side chain was carried out in dioxane with p-toluenesulfonic acid polymer-bound as the catalyst. All synthesized compounds were tested against B. cinerea using the growth inhibition assay and EC50 values were determined. The results show that activity depends on the number and nature of functional groups in the phenol ring and hydration degree of the geranyl chain. The most active compound is 1,4-dihydroquinone with one hydroxyl group attached at the end of the alkyl chain. Results from a molecular docking study suggest that hydroxyl groups in the phenol ring and alkyl chain are important in the binding of compounds to the active site, and that the experimental antifungal activity correlates with the number of H-bond that can be formed in the binding site.


Assuntos
Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fenóis/farmacologia , Terpenos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Botrytis/crescimento & desenvolvimento , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Terpenos/síntese química , Terpenos/química
6.
J Nat Prod ; 83(7): 2155-2164, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32584575

RESUMO

The NLRP3 inflammasome plays a critical role in inflammation-mediated human diseases and represents a promising drug target for novel anti-inflammatory therapies. Hispanolone is a labdane diterpenoid isolated from the aerial parts of Ballota species. This diterpenoid and some derivatives have demonstrated anti-inflammatory effects in classical inflammatory pathways. In the present study, a series of dehydrohispanolone derivatives (1-19) was synthesized, and their anti-inflammatory activities toward NLRP3 inflammasome activation were evaluated. The structures of the dehydrohispanolone analogues produced were elucidated by NMR spectroscopy and mass spectrometry. Four derivatives significantly inhibited IL-1ß secretion, with 15 and 18 being the most active (IC50 = 18.7 and 13.8 µM, respectively). Analysis of IL-1ß and caspase-1 expression revealed that the new diterpenoids 15 and 18 are selective inhibitors of the NLRP3 inflammasome, reinforcing the previously demonstrated anti-inflammatory properties of hispanolone derivatives.


Assuntos
Diterpenos/química , Diterpenos/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , Animais , Humanos , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Relação Estrutura-Atividade
7.
Bioorg Chem ; 95: 103520, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887475

RESUMO

A new series of furan embelin derivatives was synthesized and characterized as ATP-competitive CK2 inhibitors. The new compounds were efficiently synthesized using a multicomponent approach from embelin (1), aldehydes and isonitriles through a Knoevenagel condensation/Michael addition/heterocyclization. Several compounds with inhibitory activities in the low micromolar or even submicromolar were identified. The most active derivative was compound 4l (2-(tert-butylamino)-3-(furan-3-yl)-5-hydroxy-6-undecylbenzofuran-4,7-dione) with an IC50 value of 0.63 µM. It turned out to be an ATP competitive CK2 inhibitor with a Ki value determined to be 0.48 µM. Docking studies allowed the identification of key ligand-CK2 interactions, which could help to further optimize this family of compounds as CK2 inhibitors.


Assuntos
Benzoquinonas/química , Benzoquinonas/farmacologia , Caseína Quinase II/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/metabolismo , Benzoquinonas/síntese química , Ligação Competitiva , Avaliação Pré-Clínica de Medicamentos , Furanos/química , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291428

RESUMO

Leukemia is a blood or bone marrow cancer with increasing incidence in developed regions of the world. Currently, there is an ongoing need for novel and safe anti-leukemic agents, as no fully effective chemotherapy is available to treat this life-threatening disease. Herein, are reported the isolation, structural elucidation, and anti-leukemic evaluation of twenty-nine withanolide-type steroids (1-29) from Withania aristata. Among them, the new isolated withanolides, withaperoxidins A-D (1-4) have an unusual six-membered cyclic peroxide moiety on the withasteroid skeleton as a structural novelty. Their structures have been elucidated by means of spectroscopic analyses, including 2D NMR experiments. In addition, extensive structure-activity relationships and in silico ADME studies were employed to understand the pharmacophore and pharmacokinetic properties of this series of withasteroids. Compounds 15, 16, and 22 together with withaferin A (14) were identified as having improved antiproliferative effect (IC50 ranging from 0.2 to 0.7 µM) on human leukemia HL-60 cell lines compared with the reference drug, etoposide. This cytotoxic potency was also coupled with good selectivity index (SI 33.0-9.2) on non-tumoral Vero cell line and in silico drug likeness. These findings revealed that these natural withasteroids are potential candidates as chemotherapeutic agents in the treatment of leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia/tratamento farmacológico , Esteroides/farmacologia , Withania/química , Vitanolídeos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HL-60 , Humanos , Relação Estrutura-Atividade , Células Vero
9.
Molecules ; 25(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698422

RESUMO

A library of embelin derivatives has been synthesized through a multicomponent reaction from embelin (1), aldehydes and privileged structures such as 4-hydroxycoumarin, 4-hydroxy-2H-pyran-2-one and 2-naphthol, in the presence of InCl3 as catalyst. This multicomponent reaction implies Knoevenagel condensation, Michael addition, intramolecular cyclization and dehydration. Many of the synthesized compounds were active and selective against Gram-positive bacteria, including one important multiresistant Staphylococcus aureus clinical isolate. It was found how the conjugation of diverse privileged substructure with embelin led to adducts having enhanced antibacterial activities.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Benzoquinonas/química , Benzoquinonas/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Benzoquinonas/farmacologia , Bioensaio , Elétrons , Testes de Sensibilidade Microbiana , Eletricidade Estática
10.
Molecules ; 24(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671684

RESUMO

A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure-activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 µM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triazóis/síntese química , Triazóis/farmacologia , Antimaláricos/química , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Naftoquinonas/química , Triazóis/química
11.
Molecules ; 23(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346325

RESUMO

A new series of coumarin-1,2,3-triazole conjugates with varied alkyl, phenyl and heterocycle moieties at C-4 of the triazole nucleus were synthesized using a copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of corresponding O-propargylated coumarin (3) or N-propargylated coumarin (6) with alkyl or aryl azides. Based on their minimal inhibitory concentrations (MICs) against selected microorganisms, six out of twenty-six compounds showed significant antibacterial activity towards Enterococcus faecalis (MIC = 12.5-50 µg/mL). Moreover, the synthesized triazoles show relatively low toxicity against human erythrocytes.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Cumarínicos/síntese química , Cumarínicos/farmacologia , Triazóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Cumarínicos/química , Hemólise/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Molecules ; 23(12)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518153

RESUMO

A series of nine derivatives (2⁻10) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was investigated. Compounds 5 and 6 showed significant anti-inflammatory effects, as they inhibited the protein expression of nitric oxide synthase (NOS-2), cyclooxygenase-2 (COX-2), and cytokine production (TNF-α, IL-6, and IL-12) induced by the ligand of TLR4, lipopolysaccharide (LPS), acting at the transcriptional level. Some structure⁻activity relationships were outlined. Compound 5 was selected as a representative compound and molecular mechanisms involved in its biological activity were investigated. Inhibition of NF-κB and p38 signaling seems to be involved in the mechanism of action of compound 5. In addition, this compound also inhibited inflammatory responses mediated by ligands of TLR2 and TLR3 receptors. To rationalize the obtained results, molecular docking and molecular dynamic studies were carried out on TLR4. All these data indicate that solidagenone derivative 5 might be used for the design of new anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Furanos/química , Furanos/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Receptores Toll-Like , Animais , Células Cultivadas , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
13.
Bioorg Med Chem Lett ; 27(3): 484-489, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040393

RESUMO

Based on previous Topoisomerase II docking studies of naphthoquinone derivatives, a series of naphthoquinone-coumarin conjugates was synthesized through a multicomponent reaction from aromatic aldehydes, 4-hydroxycoumarin and 2-hydroxynaphthoquinone. The hybrid structures were evaluated against the α isoform of human topoisomerase II (hTopoIIα), Escherichia coli DNA Gyrase and E. coli Topoisomerase I. All tested compounds inhibited the hTopoIIα-mediated relaxation of negatively supercoiled circular DNA in the low micromolar range. This inhibition was specific since neither DNA Gyrase nor Topoisomerase I were affected. Cleavage assays pointed out that naphthoquinone-coumarins act by catalytically inhibiting hTopoIIα. ATPase assays and molecular docking studies further pointed out that the mode of action is related to the hTopoIIα ATP-binding site.


Assuntos
Cumarínicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Naftoquinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Naftoquinonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
14.
Bioorg Med Chem ; 25(6): 1976-1983, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233678

RESUMO

A set of 5-ethynylarylnaphthalimides was synthesized by Sonogashira cross-coupling reactions and evaluated for antiproliferative and antitopoisomerase II in vitro activities. Furthermore docking studies of these molecules as DNA-intercalators were carried out and the in vivo DNA-damaging activity was also determined with the model organism Saccharomyces cerevisiae. From the obtained results three naphthalimides 6, 13 and 14 showed strong topoisomerase II inhibitory activity. These three molecules also presented good docking scores as DNA-intercalators using a self-complementary oligodeoxynucleotide d(ATGCAT)2 as a model, and compounds 13 and 14 were among the most cytotoxic in the in vivo DNA-damaging activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Naftalimidas/síntese química , Naftalimidas/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Naftalimidas/química , Espectroscopia de Prótons por Ressonância Magnética , Saccharomyces cerevisiae/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
15.
Bioorg Med Chem ; 21(21): 6484-95, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24054489

RESUMO

A series of arylnaphthalimides were designed and synthesized to overcome the dose-limiting cytotoxicity of N-acetylated metabolites arising from amonafide, the prototypical antitumour naphthalimide whose biomedical properties have been related to its ability to intercalate the DNA and poison the enzyme Topoisomerase II. Thus, these arylnaphthalimides were first evaluated for their antiproliferative activity against two tumour cell lines and for their antitopoisomerase II in vitro activities, together with their ability to intercalate the DNA in vitro and also through docking modelization. Then, the well-known DNA damage response in Saccharomyces cerevisiae was employed to critically evaluate whether these novel compounds can damage the DNA in vivo. By performing all these assays we conclude that the 5-arylsubstituted naphthalimides not only keep but also improve amonafide's biological activities.


Assuntos
Antineoplásicos/síntese química , DNA Topoisomerases Tipo II/química , DNA/metabolismo , Substâncias Intercalantes/síntese química , Naftalimidas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/toxicidade , Células MCF-7 , Simulação de Acoplamento Molecular , Naftalimidas/síntese química , Naftalimidas/toxicidade , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética
16.
Steroids ; 196: 109248, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169217

RESUMO

Five new brassinosteroid analogues were synthetized from 3ß-acetoxy-23,24-dinorchol-4-en-22-oic acid. All the obtained compound showed significant activity in the Rice Lamina Inclination Test. Interestingly the effects of the methyl ester of 3ß-hydroxy-6-oxo-23,24-dinorcholan-22-oic acid (14) at concentrations of 1 × 10-7 and 1 × 10-6 M proved to be higher than those produced by brassinolide. In silico Molecular Docking and Induced fit docking (IFD) simulations for the compounds with the highest biological activity data were carried out to investigate the binding mode interactions into the brassinolide-binding groove which revealed that the compound 14 had high binding energy values and a good affinity.


Assuntos
Brassinosteroides , Ésteres , Brassinosteroides/farmacologia , Simulação de Acoplamento Molecular , Fatores de Crescimento Neural
17.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35890124

RESUMO

Dehydroisohispanolone (DIH), is a labdane diterpene that has exhibited anti-inflammatory activity via inhibition of NF-κB activation, although its potential effects on inflammasome activation remain unexplored. This study aims to elucidate whether DIH modulates NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in macrophages. Our findings show that DIH inhibited NLRP3 activation triggered by Nigericin (Nig), adenosine triphosphate (ATP) and monosodium urate (MSU) crystals, indicating broad inhibitory effects. DIH significantly attenuated caspase-1 activation and secretion of the interleukin-1ß (IL-1ß) in J774A.1 cells. Interestingly, the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), pro-caspase-1 and pro-IL-1ß were not affected by DIH treatment. Furthermore, we found that DIH pretreatment also inhibited the lipopolysaccharide (LPS)-induced NLRP3 inflammasome priming stage. In addition, DIH alleviated pyroptosis mediated by NLRP3 inflammasome activation. Similar results on IL-1ß release were observed in Nig-activated bone marrow-derived macrophages (BMDMs). Covalent molecular docking analysis revealed that DIH fits well into the ATP-binding site of NLRP3 protein, forming a covalent bond with Cys415. In conclusion, our experiments show that DIH is an effective NLRP3 inflammasome inhibitor and provide new evidence for its application in the therapy of inflammation-related diseases.

18.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355559

RESUMO

Diarrhea diseases caused by the intestinal protozoan parasite Giardia intestinalis are a major global health burden. Moreover, there is an ongoing need for novel anti-Giardia drugs due to drawbacks with currently available treatments. This paper reports on the isolation and structural elucidation of six new flavonoids (1-6), along with twenty-three known ones (7-29) from the Piper species. Their structures were established by spectroscopic and spectrometric techniques. Flavonoids were tested for in vitro antiprotozoal activity against Giardia intestinalis trophozoites. In addition, structure-activity relationship (SAR) and in silico ADME studies were performed to understand the pharmacophore and pharmacokinetic properties of these natural compounds. Eight flavonoids from this series exhibited remarkable activity in the micromolar range. Moreover, compound 4 was identified as having a 40-fold greater antiparasitic effect (IC50 61.0 nM) than the clinical reference drug, metronidazole (IC50 2.5 µM). This antiprotozoal potency was coupled with an excellent selectivity index (SI 233) on murine macrophages and in silico drug-likeness. SAR studies revealed that the substitution patterns, type of functional group, and flavonoid skeleton played an essential role in the activity. These findings highlight flavonoid 4 as a promising candidate to develop new drugs for the treatment of Giardia infections.

19.
Pharmaceuticals (Basel) ; 15(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35631411

RESUMO

Based on molecular docking studies on the ERα, a series of lignan derivatives (3-16) were designed and semisynthesized from the natural dibenzylbutyrolactones bursehernin (1) and matairesinol dimethyl ether (2). To examine their estrogenic and antiestrogenic potencies, the effects of these compounds on estrogen receptor element (ERE)-driven reporter gene expression and viability in human ER+ breast cancer cells were evaluated. Lignan compounds induced ERE-driven reporter gene expression with very low potency as compared with the pure agonist E2. However, coincubation of 5 µM of lignan derivatives 1, 3, 4, 7, 8, 9, 11, 13, and 14 with increasing concentrations of E2 (from 0.01 pM to 1 nM) reduced both the potency and efficacy of pure agonists. The binding to the rhERα-LBD was validated by TR-FRET competitive binding assay and lignans bound to the rhERα with IC50 values from 0.16 µM (compound 14) to 6 µM (compound 4). Induced fit docking (IFD) and molecular dynamics (MD) simulations for compound 14 were carried out to further investigate the binding mode interactions. Finally, the in silico ADME predictions indicated that the most potent lignan derivatives exhibited good drug-likeness.

20.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358593

RESUMO

Tamoxifen improves the overall survival rate in hormone receptor-positive breast cancer patients. However, despite the fact that it exerts antagonistic effects on the ERα, it can act as a partial agonist, resulting in tumor growth in estrogen-sensitive tissues. In this study, highly functionalized 5-hydroxy-2H-pyrrol-2-ones were synthesized and evaluated by using ERα- and phenotype-based screening assays. Compounds 32 and 35 inhibited 17ß-estradiol (E2)-stimulated ERα-mediated transcription of the luciferase reporter gene in breast cancer cells without inhibition of the transcriptional activity mediated by androgen or glucocorticoid receptors. Compound 32 regulated E2-stimulated ERα-mediated transcription by partial antagonism, whereas compound 35 caused rapid and non-competitive inhibition. Monitoring of 2D and 3D cell growth confirmed potent antitumoral effects of both compounds on ER-positive breast cancer cells. Furthermore, compounds 32 and 35 caused apoptosis and blocked the cell cycle of ER-positive breast cancer cells in the sub-G1 and G0/G1 phases. Interestingly, compound 35 suppressed the functional activity of ERα in the uterus, as demonstrated by the inhibition of E2-stimulated transcription of estrogen and progesterone receptors and alkaline phosphatase enzymatic activity. Compound 35 showed a relatively low binding affinity with ERα. However, its antiestrogenic effect was associated with an increased polyubiquitination and a reduced protein expression of ERα. Clinically relevant, a possible combinatory therapy with compound 35 may enhance the antitumoral efficacy of 4-hydroxy-tamoxifen in ER-positive breast cancer cells. In silico ADME predictions indicated that these compounds exhibit good drug-likeness, which, together with their potential antitumoral effects and their lack of estrogenic activity, offers a pharmacological opportunity to deepen the study of ER-positive breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA